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Editorial Foreword

This new series of books (CSI: Control and Signal/Image Processing Series) has
its origin in the UMIST Control Systems Centre Series, previously edited by my
colleagues Professor Peter Wellstead and Dr Martin Zarrop, which concentrated on
making widely and rapidly available the results of research undertaken in the Centre.
The aim of the new series, while continuing to concentrate on the areas of Control
and Signal/Image Processing, is to provide a wider channel of publication for any
authors who have novel and important research results, or critical surveys of partic-
ular topics, to communicate. My hope and intention is that the series will offer an
interesting and useful resource to research workers, students and academics in the
fields covered, as well as appealing to the engineering community in general.

The present volume, which is the second in the series, is concerned principally
with the application of artificial intelligence to the combination of data arising from
several different sources. Data fusion problems have arisen particularly in military
applications, such as target identification and tracking, but are by no means con-
fined to this area, being of increasing significance also for industry and commerce,
especially with regard to the life sciences. Moreover, the methods used, based for
example on neural networks, fuzzy logic and genetic algorithms, are being ever more
widely used in data, signal and image processing. I therefore hope and expect that
the book will prove to be of wide interest, and appeal to anyone interested in gaining
an informed insight into the uses of intelligent systems.

Dr Peter A. Cook
Series Editor
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Preface

There are growing interests in developing intelligent systems for civilian and military
uses as well as for many other disciplines. The aim of this book is to discuss the
design and application for building intelligent systems. Artificial intelligence (AI)
algorithms have gone through more than 2 decades of research and experimentation.
Researchers and engineers are seeing the results of applying AI to real applications.
Today the quest continues, with researchers also looking into life sciences while
attempting to understand natural intelligence, and adapting it to intelligent systems’
design.

The book is divided into two parts. The first part focuses on the general dis-
cussion of what are the essential components of building intelligent systems. These
include: the discussion on what is an intelligent system, how to build intelligence in
software design and software agent perspective, what are some of the biologically
inspired algorithms and man-made sensor systems.

The second part focuses on information processing capabilities. These include:
discussion on fusion processes, cognitive intelligence, target tracking methods, data
association techniques and controlling of sensor systems. The growing interest in
research in cooperative intelligence is also discussed, particularly in the areas of co-
operative sensing and tracking. With the technological advances in communication
systems, processor design and intelligent software algorithms, systems working in-
teractively with one another, in a coordinated manner, to fulfil desired global goals
is becoming achievable. Some experimental research results on cooperative tracking
are also shown.

G. W. Ng
DSO National Laboratories

National University of Singapore
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CHAPTER 1

Quest to Build Intelligent
Systems

If a machine is expected to be infallible, it cannot also be intelligent.
Alan Turing (1912-1954).

1.1 Desire for an Intelligent System

An intelligent system is what everyone desires to have. Intelligent systems will be
the goal of all our next generation systems development. No one will deliver an
unsophisticated system as all would want an intelligent system.

The quest for building intelligent systems is well illustrated in many articles and
papers. A quick search from IEEE/IEE journals and conference papers reveals that
more than 3000 papers contain the words ‘intelligent systems’.

1.1.1 Will an intelligent system match the human intelligence?

Are we able to build an intelligent system that is equivalent to ourselves? An intelli-
gent system that can read a book on physics or accounting and answer the questions
at the end of the chapter? Can such system look over the shoulder of a person and
learn to assemble a motor? Or make new discoveries? Exhibit emotion, tell a joke,
or display consciousness? Herbert Simon, a renowned scientist in championing arti-
ficial intelligence, believed that the answer to all these questions was ‘yes’ [7].

Simon’s view was that if intelligence can be demonstrated by large collections
of carbon-based molecules, then there is no reason, in principle, why the same would
not be the case for any other collection of molecules capable of manipulating phys-
ical symbols. However, that philosophy led to unending controversy and debates.
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There are many different views with regards to how far human beings could achieve
in building intelligent systems. These differences in views ultimately rest on in-
dividual beliefs. For example, many people believe that the unique capabilities of
human beings such as creativity, emotion, and consciousness, cannot be reproduced
by another system.

1.2 What is an Intelligent System?

What is considered an intelligent system? Does a machine that can interact with a hu-
man be classified as intelligent? Toys such as Furbys (or Shelby the next generation
Furbys), Sony Aibo (robot dog) and Paro (pet robot - baby harp seal) are interactive
to human response. Are these toys intelligent systems? Indeed, the definition of the
words ‘intelligent system’ has often been quite unclear.

1.2.1 Examples of existing intelligent systems

Listed below are some examples of systems that claim to be intelligent:

� Transportation systems. Intelligent transportation systems are widely discussed
and presented, some examples cited are [40], [130], [115] and [46]. These
cover intelligent highways, intelligent traffic controls and intelligent vehicles.
Autonomous, collision-avoidance, energy saving and smart sensor technology
used in vehicles are some of the areas presented in intelligent vehicle research
activities. Under an intelligent transportation system, the focus includes an au-
tomatic traffic guiding system for detecting and monitoring of traffic to achieve
optimum traffic flow. Such intelligent systems also consist of a network of sen-
sors on-board the car with a centralized and hierarchical fusion architecture.
The fusion processor on-board can also be fitted with sensors, such as radar
and camera.

� Robotic systems. Research in robotics most of the time tries to mimic living
things. For example: intelligent hand [135], cockroach-like robot [171], multi-
arm robot [223] and walking robots [166]. Sensors such as touch and slip
sensors, and microphone for vibration are often used. Fusion algorithms are
introduced in multi-sensor robots for the control and coordination of actions
among independent processors within the robot system.

� Home appliances. Driven by business and market forces, we also see an in-
crease in intelligent home appliances, such as intelligent washing machines
using a hybrid of fuzzy rules and reasoning. A smart home appliance is one
that incorporates novel sensing and control algorithms so as to either auto-
mate some manual functions, such as estimating the clothes load in a washing
machine to economize on energy use, or to introduce something completely
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new, such as detecting boiling water on an electric cooktop [9]. The position-
ing of an intelligent ventilator via acoustic feedback [162] for an intelligent
home system could reduce the noise from external sources, such as approach-
ing aircraft or noisy vehicles. Algorithms considered for such intelligent home
appliances are: fuzzy logic, rule-based and knowledge-based controller.

� Diagnostic systems. These are intelligent online machine fault diagnostic sys-
tems. These systems typically use algorithms such as data mining technique,
neural network and rule-based reasoning or a combination of them. Data are
normally in textual form. An example of an intelligent diagnostic system can
be found in [80].

Beside the above listed examples, there are many more that have claimed to be
intelligent systems in one way or another. And yet a lot more that do not use the
word intelligent may also have a lot more intelligent capabilities than those claimed.

1.2.2 Learning from nature

There are groups of researchers that look to nature for inspiration on how to build
intelligent systems. Their research includes understanding and learning to engineer
the following:

� Swarm intelligence. Animals and insects are able to coordinate and group
themselves for protection and to hunt for food. For example, ants are able
to coordinate with one another to carry heavy objects, a school of small fish
is able to move as a large group for self-protection, bees are able to build a
beehive in a cooperative way.

� Artificial immunology system. Our complex immune system is able to de-
fend our body in a very intelligent way. Immune cells such as T-cells, are
able to remember the pathogen (foreign objects such as viruses, bacteria, par-
asites and other microbes) they have combated before, and are able to multiply
the ‘warrior’ cells very rapidly when they encounter the same pathogen again.
Hence, learning from our immune system may provide some key answers to a
better way of building smart systems for particular applications, such as com-
puter security systems. See Appendix A.5 for a short description of artificial
immunology systems.

� Intelligent sensory systems. Animals and insects have, in general, good sen-
sory systems, which are effective and efficient. For examples, a dog’s nose
is able to detect an object present even when the object is giving out a very
low odour signature, whereas the viper snake has a highly sensitive thermal
sensing capability [118].
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� Advanced locomotion. Animals and insects have highly advanced locomotion
and control bio-mechanisms that enable the whole body or platform to move
in a very stable and efficient manner within a specific environment.

1.2.3 How do we qualify a system as intelligent?

Dictionary definitions of intelligent include:

� Having or showing (usually a high degree of) understanding, clever, quickness
of mind.

� Endowed with the faculty of reason; having or showing highly developed men-
tal faculties; well informed; knowing, aware (of).

� Having or showing powers of learning, reasoning, or understanding, especially
to a high degree.

From the definitions and the examples given, the important attributes of an intel-
ligent system would consist of words such as: learning, intuition, creativity, quick-
ness of mind, clever, reasoning, understanding, autonomous behaviour or self gov-
erning, adaptive, ability to self-organize, coordinate and possess knowledge. Other
than human beings, no other living things or man-made machines could currently
fulfil all the above requirements. However, if a system could fulfil a subset of the
attributed words, the system would have to possess some form of intelligence (or
sub-intelligence). This will include a system that could perform quickly with a cer-
tain logical reasoning, and would be classified as ‘clever’ or ‘smart’.

One school of thought is that all intelligent systems must have the capability to
learn. In fact, the ability to learn dominated most of the studies in the late ’80s and
’90s. Learning capabilities are often related to the study of artificial neural networks.
Researchers unanimously agree that learning is an important attribute of intelligent
systems. However, that is not all what an intelligent system should have. Based on
our human growth and development, we know that some of our functions are more
than just learnt. For example, the ability of a new born baby to suck the mother’s
breast milk is not taught but is innate. Hence, intelligent systems need to include a
designed element where knowledge already exist and not always need to be trained
or learnt.

The other school of thought is that biologically inspired algorithms, such as
fuzzy logic, neural network and genetic algorithms, are non-optimal algorithms and
do not provide good solutions to a problem. Hence, it may not be the way to go
in building intelligent systems. Mathematical modelling techniques or other statis-
tical and probabilistic algorithms would be better than the so-called computational
intelligence algorithms.

However, it is clear that currently no single technique can solve all the attributes
we desire in building intelligent systems. Hence, a combination of various tech-
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niques is the way to go.

Here we define an intelligent system as any system that could receive sensory
information and has the ability to process this information with a computationally
efficient and effective software, combined with one or more smart or intelligent algo-
rithms (where the algorithm could be biologically inspired, mathematical modelled,
statistical algorithms, etc.) for performing functions, such as control, managing re-
sources, diagnostic and/or decision-making, to achieve multiple or single task/s or
goal/s.

The ultimate goal is for an intelligent system to be modelled after human intelli-
gence. Figure 1.1 shows how a child in her early development would already possess
the ability to think and learn. Scientists are looking to the brain to enhance our cur-
rent way of information processing. The ability to engineer such a system, that could
match the total functions of the brain in processing and controlling all the sensory
systems, plus managing the whole state of the body or platform in adapting and in-
teracting with the dynamics of the environment, is a non-trivial task. In chapters 3
and 5 the discussion on neural networks and cognitive intelligence are respectively
related to the modelling and understanding of the brain.

Figure 1.1: A child can think and learn. The multiple sensory systems (such
as eyes and ears) will enable her to know the environment.

1.3 What Makes an Intelligent System

With the above definitions, the basic components of an intelligent system would be,
but not limited to:

� sensor technology.
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� computing technology.

� intelligent/smart algorithm.

� communication technology.

� platform.

This book, in particular, will concentrate on the intelligent or smart algorithms
used for developing intelligent systems and also focuses on fusion and control of
multiple sensory system algorithms working in a network of fusion nodes.

The book does not present any work on communication technology and the
platforms that physically hold these technologies. However, it acknowledges that
the development in both the communication and platform technology will certainly
play an important role in building intelligent systems. Communication technology
has been expanding rapidly. For example, optical transmission rates are hitting the
100GHz and wireless communication, such as bluetooth 1, 802.11 2, ultrawideband3

and 3G/4G is continuously enhancing distributed networking structures. Hence, im-
provements in communication technology will have a significant impact on building
intelligent systems particularly in the arena of decentralized and distributed network-
ing systems. Likewise, the platforms that carry these technologies have been improv-
ing with the discovery of new material and new engineering designs. Our body is
an example of the most beautifully designed platform where the human sensory sys-
tems and the processing of sensory inputs from our brain enable us to function as an
intelligent being.

1.3.1 How an intelligent system sees the world?

How does an intelligent system see the world or is aware of its environment? Sensor
technology plays an important role in helping an intelligent system see the world.
This is well illustrated in our own sensory system. Without the eye, ear, skin, nose
and tongue our brain will be totally useless even if it has the most powerful biological
algorithms.

Hence the growing importance of intelligent systems is in line with the increase
usage and improvement in sensory technology. Smart sensory technology that will
make sense of the information detected, and combines with intelligent algorithms
and fast processors will make the system better.

1Delivers data at speed of 700Kbps and range of about 10m.
2802.11a delivers data at maximum speed of 54Mbps and range of about 30m.
3Potential in delivering data up to 100Mbps and range of about 60m.



11

1.4 Challenges of Building Intelligent Systems

We will see more claims of intelligent systems research and development activities
and even products with different applications. Each of these is indeed a part of
the building blocks in making intelligent systems. They each have a synergy in
contributing toward our quest of building the ultimate intelligent system. However,
whether an intelligent system will ultimately match human creativity, flexibility, and
have consciousness is debatable.

This book discusses the challenges of building intelligent system into two parts.
The first part will present the essential components that make an intelligent system.
These are:

� Software design. Since the current building of intelligent systems relies heav-
ily on software, a robust software design will play an important part. Software
programming has moved from assembler and procedural style to object- and
agent-oriented programming. The challenge of building good software to sup-
port an intelligent system will be discussed. Agent-based software will also be
discussed and compared with object-oriented design.

� Biologically inspired algorithms. Intelligent systems will require smart soft-
ware algorithms to provide all the support needed for control and decision-
making in a dynamic and ever-changing environment. Many researchers have
been involved in finding better and smarter algorithms for many centuries. To-
day the challenge in this area continues, particularly in biologically inspired
algorithms. These algorithms have a relationship to the way humans solve
problems and are seen as the right path in our quest to achieve the ultimate
intelligent algorithms. Algorithms such as neural networks, genetic algorithm
and fuzzy logic will be presented.

� Sensor systems. As discussed earlier, how the intelligent system sees the world
will depend on the sensor systems built on it. Hence, knowing the types of sen-
sor systems available and applying them appropriately will contribute toward
building robust intelligent systems.

The second part of the book will focus on data and information fusion, track-
ing and sensor management. Fusion is one of the important aspects of an intelligent
system. Fusion brings data from multiple sensors or multiple sources together to
form useful information. High-level fusion processes also try to derive, predict and
make sense of information. This includes the process of understanding the situation,
its impact and ultimately for implementing the decision-making process. Part of the
high-level fusion, which is a larger part of the sensemaking process, resides in un-
derstanding how our brain interprets information received from the sensory systems
4. The understanding of information will form knowledge. How does an intelli-
gent system understand the information to form a collection of knowledge and using

4Studies are on going in these areas at different research institutions. For example, the study on how
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this knowledge with good judgment (or wisdom) for short-term and long-term need
remains a challenging area of research.

the brain interprets the ears’ input has led to the discovery of virtual surrounding, in which two speakers
sound like many more [129].



CHAPTER 2

Software Design for Intelligent
Systems

Software is an essential engineering tool for intelligent system design.
G. W. Ng

2.1 Introduction

In any software project, system analysis and design is an important process - more
so in the building of an intelligent system, which currently relies heavily on software
programs.

In this chapter, we aim to discuss the general software analysis and design issues
for building intelligent software systems using UML (Unified Modelling Language).
UML, in our opinion, is expressive enough to capture the design decisions required
to design the software program used in intelligent systems. For example, there are
a lot of CASE (Computer Aided Software Engineering) tools developed for UML
that could be used for building intelligent systems, such as expert systems. Fur-
thermore, UML is extensible and very flexible, hence would be suitable for newer
types of smart software, such as intelligent software agents. Software design that
includes the capability of agent technology may play an important role in future
intelligent systems. Hence, this chapter will also discuss software agent-based sys-
tems, propose an agent-oriented software development methodology and discuss the
object-oriented versus agent-oriented software engineering issues.

This chapter is organized as follows: Section 2 presents the analysis and design
using UML. Section 3 presents the data structure and storage. Section 4 describes
what is a software agent-based system. Section 5 proposes an agent-oriented soft-
ware development methodology. Section 6 discusses on object versus agent-oriented
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software engineering issues.

2.2 Analysis and Design Using UML

In any software project, software analysis and design phases are meant for defining
the architecture and help meet the needs of customers. They are achieved through
building models. Models help us visualize a complex system under a controlled
environment; it is a simplification of reality. There are a number of methodologies
pushing software analysis and design. Of late, Object-Oriented Analysis and Design
(OOAD) is particularly popular. Of these, Objectory (by Ivar Jacobson), the Object
Modelling Technique (OMT by James Rambaugh) and the Booch Methodology (by
Grady Booch) are widely used and successful ones. More recently, a global effort
pioneered by these 3 veterans, crystallized their expertize and experiences into a
standard known as the Unified Modelling Language (UML) [37].

The UML is a standard language for visualizing, specifying, constructing and
documenting a software product. It is methodology neutral and can be used to doc-
ument a wide variety of software intelligent systems. A methodology will use this
expressive language in producing a software blueprint. One example of such use is
the CommonKADS Methodology (a complete methodological framework for devel-
oping knowledge-based systems). It uses UML notations.

2.2.1 Diagrams

Central to UML is a wide choice of diagrams, which are graphical presentations of
connected elements and their inter-relationships. They are particularly useful for the
visualization and construction of software components. Table 2.1 shows the choice
of diagrams.

Note that the component and deployment diagrams exist in UML to help docu-
ment the organization and dependencies of software components, and how the sys-
tem is physically deployed. We find that they are not necessary in documenting
agent-based systems per se but will be required to document the software implemen-
tation of the system.

2.2.2 Relationships

There are basically 4 types of relationships in object-oriented modelling. These are:

� dependencies, which offer a loose coupling link within one class, using the
services of another.

� aggregation shows part-whole relationships.
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Number Diagrams Descriptions
1. Activity diagrams Activity diagrams show the flow of control within

a system or sub-system. They are particularly
effective in showing concurrent activity. Using
swimlanes, ownership of an object can be
clearly shown. Activity diagrams can be potentially
used to show how various software agents
interact concurrently with one another.

2. Sequence diagrams Sequence diagrams display how object interacts
in a time sequence.

3. Collaboration diagrams Collaboration diagrams display object
interactions organized around objects and
their links to one another.

4. Class diagrams A class diagram is a collection of objects
with common structure, behaviour, relationship
and semantics. The class diagram is static
by nature. In agent-based systems, classes
can be used to represent agents as well.
Stereotypes can be used to mark
the distinction for agent classes.

5. State transition A state transition diagram (STD) shows
diagrams the life history of a given class. It shows the

events that cause a class to transit from
one state to another. State transition diagrams
can be nested; this allow us to effectively
manage the complexity. In agent-based
systems, the states of each agent could
be represented by STD.

Table 2.1: Diagrams for software design.

� associations represent structural links among objects.

� generalization for the derivation of inheritance relationships.

2.2.2.1 Dependency

This is the relationship of one class depending on another class [37]. For example,
when the object of a class appears in the argument list of a method of another class,
the latter is using the former to do something. If the used class changes, there is a
high chance that the user class is affected. So the user class depends on the used
class. The example in Figure 2.1 shows that class A is dependent on class B to
perform some services.

2.2.2.2 Aggregation

This relationship is useful to show that an object contains other objects, in what is
widely called the part-whole relationship. The container class, which is also called
the owner class, typically creates and destroys the owned object. In Figure 2.2, the
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B

A

Figure 2.1: Dependency relationship.

IAinNet class really is made up of an array of layers; each of these layers is itself an
IAinObj. In UML notation, a diamond shape at the container end pointing towards
the contained-object end shows an aggregation through reference. The multiplicity
shown indicates that ‘1’ IAinNet object could contain 0 or more IAinObj objects.

The strong form of aggregation is known as composition. This is in cases when
the owned object cannot be shared across different owners. Furthermore, the owned
object forms an important component within the owner class. For example, a neuron
class is composed of an identification tag (could be an integer or string) and weights
(could be floats or doubles) among other things. Figure 2.3 shows an example of
composition relationship.

2.2.2.3 Association

This is a structural relationship between 2 objects permitting the exchange of prede-
fined messages between them (see Figure 2.4). The message flow can be unidirec-
tional or bidirectional. For example, the Layer class could maintain a bidirectional
relationship with a neuron class. This relationship offers a general relationship be-
tween 2 classes, and is used whenever a class uses the services of another class. An
aggregation can be seen as an association.

2.2.2.4 Generalization

This is an inheritance relationship, where the derived class has all the characteristics
exposed by the parent classes. They are more widely called ‘is-a’ relationship. For
example, an InputNeuron class may inherit from a Neuron class because the former
‘is-a’ neuron with more specific roles serving within the input layer. In Figure 2.5,
the class ‘Vehicle’ is a root class; derived from it are the car, bus or van classes. This
relationship is particularly useful for extending software capabilities. A class hier-
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+<<virtual>> set(const int param, const int value):bool

+<<virtual>> get(cont IAinObj*, IAinObj*):bool

+<<virtual>> get(const int param, int &value):bool

+<<virtual>> IterateOneEpoch():bool

+<<virtual>> Propagate():bool

-Layers:IAinObj*

-NumLayers:int

+<<virtual>> set(const int param, IAinObj*):bool

+<<virtual>> get(const int param, IAinObj*):bool

IAinNet

IAinObj

AinLayer

-NumNeurons:int

-Neurons: AinNeuron* 

+<<virtual>> set(const IAinObj*, IAinObj*):bool

0..*

1

Figure 2.2: Aggregation relationship.

archy almost always leverages on polymorphism to extend the behaviour of derived
classes. In the example, the vehicle may provide a default drive method, which is
polymorphic (using keyword virtual). But in reality, driving a car may be slightly
different from driving a bus. So the drive method in the bus is defined so as to over-
ride the default operation defined in the vehicle class. The power of a class hierarchy
and polymorphism are further explored in a number of design pattern books.

2.3 Data Structure and Storage

Quite often, in building intelligent systems, the data structure and storage could be
complex. Traditionally, arrays and lists have been used for quick random or se-
quential access, however, other data structures can be better explored. UML can be
effectively used in describing the software design of data structure and storage.
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Sensor system 

Locomotion system

Robot Data process system

Figure 2.3: Composition relationship.

2.3.1 Data structure

There are many data structures. A good software design generally has a good data
structure serving as the backbone. They are important because they ensure data are
organized properly. When the correct structure is used, the storage becomes scalable.
Common structures are: lists, queues, stacks, trees, arrays, sets and maps.

In deciding the correct data structure to adopt in an intelligent application, one
has to study the following factors:

� How are data represented in the application? Certain data are, by nature, hier-
archical. For example, in representing a graphical model in a 3D application,
an obvious choice would be using a tree to organize the model.

� How should data be retrieved from the structure? In a neural network back-
propagator application, trees seem a good choice. For example, we could have
a layer as a branch, and under that branch we could have a number of nodes,
each representing a neuron. The propagation is from one branch to the next,
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B

A

Figure 2.4: Association between 2 classes.

in a lateral traversing manner. An alternative is to use a map data structure to
organize a neural network. A map relies on a key to look up some content. A
number can identify the layer, and this is used as a key to obtain information
on a particular layer.

Usually, the choice of a data structure will depend on three issues:

� Ease of programming. Does the choice of a data structure make implementing
the system easier?

� Time efficiency. Various data structures offer different performance in terms
of insertion, deletion and retrieval.

� Space efficiency. How much physical space a data structure occupies is also
important. This is especially so in memory constrained systems.

2.4 What is a Software Agent-based System?

Rapid advances in information and communication technologies, notably Internet
networking and wireless communications, are providing a new infrastructural and
communications means to achieve higher levels of automation, flexibility and inte-
gration in the development of distributed software applications. To mutually refine
and exploit these technologies, multiagent systems (i.e. systems of multiple agents),
according to Jennings et al. [112], are being advocated as a next generation models
for engineering complex, distributed systems [242, 113].

Agent-based systems could potentially represent a new way of analyzing, de-
signing, and implementing complex software systems in a network-centric infras-
tructure. It is claimed as a possible basis framework to bring together and extend the
vast body of knowledge from artificial intelligence, computer and control sciences,
operations research and related fields, such as economics and the social sciences
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Figure 2.5: Generalisation relationship.

(reference Proceedings of the ICMAS’ 2000 1). Examples of potential agent-based
systems are: personalized email filters, air-traffic control systems and command and
control systems. The potential applications of agents in many small and complex
systems are on hand. However, there are also concerns that certain aspects of agents
are being dangerously over-hyped and if not controlled, may suffer the same back-
lashes as artificial intelligence (AI) in the 1980s.

2.4.1 What is an agent?

There is no universally agreed definition of the term agent. According to [243], an
agent is defined as ‘a computer system that is situated in some environment and is
capable of autonomous action in this environment in order to meet its design ob-
jectives’. In this chapter, we will mainly focus the discussion on software agents.
Software agents can occupy many different environments, such as in the Internet or
within a core local area network. The autonomous action of an agent is its ability
to control its own state and also can interact with humans, other systems or other
agents. Agents are flexible in the sense that they are [242]:

� responsive: agents should perceive their environment and respond in a timely
fashion to changes that occur in it;

1ICMAS: International Conference on MultiAgent Systems.
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� proactive: agents should not simply act in response to their environment, they
should be able to exhibit opportunistic, goal-directed behaviour and take the
initiative where appropriate;

� social: agents should be able to interact, when appropriate, with other artificial
agents and humans in order to complete their own problem solving and to help
others with their activities.

Hence, an agent that has all the attributes of these flexibility parameters, is also
known as an intelligent agent 2.

2.4.2 What is a multi-agent system?

Multi-agent systems refer to systems with multiple agents. In general, the study of
multi-agent systems [236] involves three mutually dependent areas, namely: agent
model and architecture, communication languages and interaction protocols. An
agent model refers to its internal architecture of integrated data structures and func-
tionalities that should ideally support planning, reacting and learning, while a multi-
agent architecture, in general, specifies an infrastructure for coordination or collabo-
ration among the agents. Communication languages enable agents to describe their
messages meaningfully for knowledge exchange, while interaction protocols enable
the agents to carry out structured exchanges of messages.

2.4.2.1 Multi-agent approach to distributed problem solving

When adopting an agent-based approach to distributed problem solving (DPS), it is
clear that most problems will require multiple agents to represent the decentralized
(or distributed) nature of the problem. Moreover, these agents will need to interact
with one another, to achieve their common or individual goals and to manage, so as
to ensure a proper temporal order 3 among dependencies that may arise from being
situated in a common environment [236, Chapter 2].

2.4.2.2 Multi-agent negotiation

One means of interaction is negotiation. By negotiation, we mean that agents work
out, communicatively, an agreement that is acceptable by all agents. In distributed
problem solving, negotiation is one way that agents use in cooperation to solve the
problem. Generally, an automated means (or reasoning mechanism) of negotiation

2An intelligent agent is a software entity capable of flexible autonomous actions to meet their design
objectives (goals); autonomous in that it requires minimal or no human intervention and flexible (or in-
telligent) in that each agent can react to perceived changes in a common environment, interact with other
agents when necessary, and take proactive steps towards its design goals agent [236, Chapter 1]

3In our view, what is proper is domain dependent, and is decidedly a subjective opinion of the agent
designer/analyst.
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for an agent can be implemented as a negotiation protocol within which a decision-
making model (or logic) over the objects of negotiation resides.

In the literature on general negotiation frameworks, agents that can negotiate
with exact knowledge of each other’s cost and utility functions, or such knowledge
learnt in the initial step of interaction, have been proposed [131]. There are agents
that negotiate using the unified negotiation protocol in worth-, state-, and task-driven
domains, where agents look for mutually beneficial deals to perform task distribution
[198, 251]. In negotiation via argumentation (NVA), the agents negotiate by send-
ing each other proposals and counter-proposals. In one NVA approach [132], these
proposals are accompanied by supporting arguments (explicit justifications) formu-
lated as logical models. In another NVA approach [116], the distributed constraint
satisfaction problem (DCSP) algorithm [247] provides the computational model, ex-
tended with the supporting arguments (accompanying the proposals) formulated as
local constraints. In yet another approach [208], agents can conduct NVA in which
an agent sends over its inference rules to its neighbour to demonstrate the soundness
of its arguments. Finally, there are also negotiating agents that incorporate AI tech-
niques (e.g. auction mechanisms and metaphor-based mechanisms that attempt to
mimic human practical reasoning in some specific ways).

For a complete review of agent negotiation, readers may refer to Jennings et al.
[112].

2.5 An Agent-Oriented Software Development Method-
ology

Like object-oriented software development, we believe that an iterative approach to
developing an agent-based software systems holds the best promise of successfully
developing such systems. An iterative approach allows important requirements of
the system to be validated early and also serve to clarify unclear requirements. The
concepts covered here do not represent a fully functional agent-based development
methodology but rather provide several suggestions on what to focus on during anal-
ysis, design, coding and testing of multi-agent systems.

Typically, an iterative development has the following characteristics, as illus-
trated in Figure 2.6.

In an iterative development approach, several phases of the system are created
to provide early feedback on the usability and performance of the system. Also,
analysis, design, coding and testing can take place almost simultaneously. Note,
however, that the effort expanded in analysis, design, coding or testing is different in
each time quantum. For example, during the initial development to the system, most
of the effort would focus on analysis. Towards the end of the development, most of
the effort would be spent on testing. Various formal reviews are also planned during
the development in order to track and monitor the progress of the project (i.e. we
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Figure 2.6: Example of an iterative approach to agent software development.

develop iteratively but manage it sequentially). These reviews also serve as ‘exit
points’ to the project. For example, if the project cannot meet its expectation, the
project management team can choose to terminate the project.

Note that for more exploratory systems, a spiral development methodology can
be followed. Figure 2.7 shows a typical spiral development process. However, it will
not be discussed in this section.

In the discussion that follows, we will assume that the development of the agent-
based system will be built on top of an agent-based infrastructure. Also, we will sug-
gest appropriate UML diagrams suitable for capturing analysis and design decisions.
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Figure 2.7: Spiral development process [193].

2.5.1 Analysis

During the analysis phase, the system requirements of the system are analysed and
translated to unambiguous specifications. Use-cases and interactions diagrams can
be used to capture these requirements. From the use-case description, agents can be
identified.

Having defined the use-case model, the roles of the system need to be found.
Four types of roles need to be determined. These are:

� Responsibilities. This represents the dos and don’ts of that role.

� Permissions. This represents the type of information the role can access.

� Activities. This represents the tasks that a role performs without interacting
with other roles.

� Protocol. This refers to the specific pattern of interaction between roles.

After the roles have been identified and documented, the other important aspect is the
interactions between roles. Note that this is done when analysing the system require-
ments after the agents are identified. This step examines how the agents collaborate
to accomplish certain roles.
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2.5.2 Design

In the design phase, the roles are mapped into agent types. Agent instances are
created from each type. This is analogous to the classes and objects in the object-
oriented world. The class diagram can be extended to be an agent diagram by stereo-
typing the class as << agent >>. The same idea can be applied to agent instances
by extending the object representation. The next step is to develop the service model.
This model captures how each agent fulfil its role. The collaboration diagram can
be extended to serve as a service model. Finally, the acquaintance model is created.
This model captures the communication between agents. The interaction diagram
can be extended to represent the acquaintance model.

In detail design, we then decide what type of agents will best implement the
system requirements. Here, the software designer will need to decide if an agent
will be a BDI (belief, desire, and intention), Reactive, Planning, Knowledge-based
or some other new user-defined agent architecture. In addition, in situations where
non-agent based entities are required to be incorporated into the system, they should
be wrapped up as agents so that the entire design view of the system can be/have
an agent-based view. Concepts on agent-based design pattern can also be applied
during detail design.

2.5.3 Coding

In coding, the facilities provided by the agent-based infrastructure will be used to
code the system. For example, in the JACK agent infrastructure, the system is essen-
tially Java codes. However, extensions incorporated into the Java language to provide
agent-related facilities are used to implement agent behaviours and functions.

2.5.4 Testing

Testing of agent systems follows testing of traditional software system. The test
cases should be derived from the use-case model. If certain agent behaviours need to
be verified, specific scenarios should be created to make verification possible. The
system can then be tested.

2.6 Object- and Agent-Oriented Software Engineer-
ing Issues

Table 2.2 shows the functionality and feature differences between an object and an
agent.

In most of the cases, agent-oriented designs are adapted from an existing object-
oriented design methodology. Some even treat an agent as an active object. Agent-
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Function/ Object Agent Comments
Feature

Method of By invoking other By requesting other Agents do it
execution objects. agents, it does not invoke because they

other agents. In other decide to do so.
words, a request may
not be carried out
as all agents have
autonomy to decide.

System goal Objects in a system In a multi-agent system,
may share a common we cannot assume that
goal. all agent will share

a common goal.
Communication Communicate by Communication means is Object-oriented

message passing. more complicated than just communication structure
message passing. Needs is well structured and
complex protocols that studied. Agent-based
involves coordination and system protocols are
interaction with each other. still a research topic.

Encapsulation Objects encapsulate Agents encapsulate
some state and may some state and are not
be accessible to other accessible to other agents
objects (unless it is It makes decisions about
declared as private). what to do based on
It does not make this state without
decisions but simply direct intervention
executes after the direct of human or
intervention of human other agents.
or other agents.

Behaviour Object-oriented design Agent-oriented designs
factor does not consider have to take into account

object flexible flexible behaviour such as
behaviour. reactive and pro-active

behaviour of an agent.
Thread of Objects are quiescent Agents are continually Note that concurrency
control most of the time, active and typically are in object-oriented

becoming active only engaged in an infinite approach does
when another object loop of observing attempt to fufil some
requires their services. their environment, updating active role of an object

their internal state and but it does not capture
selecting and executing the full autonomous
an action. characteristics of an

agent.
UML UML is defacto Some agent researchers Note that adapting

standard for are attempting to from UML may be one
object-oriented adapt the UML notation of the best approaches
approaches. for agent-oriented for agent-oriented design.

approaches.

Table 2.2: Object versus agent software engineering issues

oriented software engineering is at an infancy stage of research and development.
There are still many issues with regard to multi-agent system software engineering
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design. Issues such as:

� Software design methodology of agents. These are currently under intensive
research. Adapting from UML may be one of the best approaches for agent-
oriented design. However, it is also noted that the extension of UML for agent-
oriented design would still need significant work particularly the problem of
the relationship between agents and objects.

� Relationship of agents with other software paradigms. It is not clear how the
development of agents systems will coexist with other software paradigms.
This point also makes adapting the UML for agent-orientated software engi-
neering important. Currently, most of the object-oriented software systems are
analysed and designed using UML.

� System robustness. With the massive number of agents dynamically interact-
ing with one another in order to achieve their goals, it is not completely clear
what happens to system stability and behaviour (chaotic behaviour). Some
form of agent structure or organization may be necessary depending on the
application domain.
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CHAPTER 3

Biologically Inspired
Algorithms

Nature provides the main inspiration in designing intelligent systems.
G. W. Ng

3.1 Introduction

Biologically inspired algorithms provide one of the essential tools in building in-
telligent systems. As the name implies, these algorithms are developed or invented
through modelling and understanding of biological systems or nature’s own intelli-
gence, such as the immune system, the human brain, the evolutionary of gene and the
collective intelligence of the insects or animals. The biologically inspired algorithms
presented here are genetic algorithms, neural networks and fuzzy logic. This chapter
will give an overview of these algorithms and also discuss some of the benefits and
drawbacks of each algorithm. Included in this chapter is a brief introduction on the
traditional expert system 1. Lastly, we also present the notion of fusing these algo-
rithms to leverage on their strength and offset their weakness. The chapter provides
sufficient details to those engineers interested in utilizing these biologically inspired
algorithms for various applications.

The chapter is arranged as follows: Section 2 presents the genetic algorithms.
Section 3 presents the neural network. Section 4 presents the fuzzy logic algorithm.
Section 5 presents the expert system. Section 6 briefly discusses the fusion of the
various biologically inspired algorithms. Note that a brief description of the artificial
immunological system is presented in the appendix and the cooperative intelligence
is covered in chapter 8.

1Fuzzy logic, neural networks and genetic algorithms could also be viewed as part of the modern
expert system or knowledge-based information management system.
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3.2 Evolutionary Computing

Evolutionary computing refers to algorithms that are based on the evolution of a
population toward a solution of a certain problem. The population of possible so-
lutions evolves from one generation to another, ultimately arriving at a satisfactory
solution of the problem. The collection of evolutionary computing algorithms can
be categorized into 4 methodologies, namely:

� Genetic algorithms.

� Genetic programming.

� Evolutionary strategies.

� Evolutionary programming.

These algorithms have been used successfully in many applications requiring the
optimization of multi-dimensional functions. The differences among the various
evolutionary computing algorithms are in their:

� Method of generating the evolving population; and

� Method of representing the population within the algorithm.

3.2.1 Biological inspiration

All living organisms consist of cells. In each cell there is the same set of chro-
mosomes. Chromosomes are strings of DNA and serves as a model for the whole
organism. DNA is shaped as a double spiral with linking bars, like a twisted rope
ladder.

A chromosome consists of genes, blocks of DNA. Genes are the body’s chemical
instructions. Each gene is an instruction to make a particular protein. Genes make
us unique, such as colour of eyes, hair, etc. Each gene has its own position in the
chromosome. This position is called locus.

A complete set of genetic material (all the chromosomes) is called a genome.
A particular set of genes in a genome is called a genotype. The genotype is, with
later development after birth, the base for the organism’s phenotype, its physical and
mental characteristics, such as eye colour, intelligence, etc.

There are 46 chromosomes in each of our body cells, divided into 23 pairs. One
half of each chromosome pair came from the mother and the father.

During reproduction, genes from parents form, in some way, a whole new chro-
mosome (also known as recombination or crossover). The newly created offspring
can then be mutated. Mutation means, that the elements of the DNA are slightly
changed. These changes are mainly caused by errors in copying genes from parents.
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The fitness of an organism is measured by the success of the organism during its
life.

3.2.2 Historical perspectives

Evolutionary computing was inspired by Darwin’s theory of evolution. The idea of
evolutionary computing was introduced in the mid ’60s by Ingo Rechenberg in his
work ‘Evolution Strategies’ [204]. Then the evolution strategies were evolution pro-
grams with the objective of finding floating point solutions in optimization problems.
Hence, floating point number representation was used.

In the late ’60s, Larry J. Fogel [79] and his colleagues developed what they
called evolutionary programming. Evolutionary programming uses the selection of
the fittest where the only structure modification allowed is the mutation process.
There is no crossover and each point in the population represents the entire species.

Genetic algorithms (GAs) were developed by John Holland in 1975 [101]. In
1992 John Koza of Stanford University used genetic algorithms to develop programs
to perform certain tasks. He called his method ‘genetic programming’ (GP). Hence
GP is a special implementation of GAs. LISP (LIst PRocessing) programs were then
used, because programs in this language can be expressed in the form of a ‘parse
tree’, which is the concept the GA works on.

Of all the 4 methodologies, more work has been done with genetic algorithms
and their various applications. Hence, in the following subsection, we will present
these genetic algorithms in more detail.

3.2.3 Genetic algorithms

GA is among the most popular and rapidly growing area in evolutionary computa-
tion. GAs consider many points in the search space simultaneously, and have been
found to provide rapid convergence to a near-optimum solution in many types of
problems. GA will generally include the four fundamental genetic operations of:
selection, crossover, mutation, and competition. GAs show much promise, but suf-
fer from the problem of excessive complexity if used on problems that are too large.
GAs are most appropriate for optimization-type problems and have been applied suc-
cessfully in a number of applications such as control [88], weapon management and
scheduling problems.

3.2.3.1 Introduction to GAs

GA starts with a set of solutions (represented by chromosomes) called a population.
Solutions from one population are taken and used to form a new population. This
is motivated by the hope that the new population will be better than the old one.
Solutions which are selected to form new solutions (offspring) are selected according
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to their fitness - the more suitable they are the more chances they have to reproduce.
This reproduction circle (or evolving process) will be repeated continuously until
the stop criteria are satisfied. The stop criteria could be that the number of evolving
generations or the expected performances are met.

The formation of GAs can be summarized by the following steps:

� Step 1 - Generate a random population of n chromosomes (suitable solutions
for the problem).

� Step 2 - Evaluate the fitness f(x) of each chromosome x in the population.

� Step 3 - New population. Create a new population by repeating the following
steps until the new population is completed.

� Step 4 - Selection. Select two parent chromosomes from a population accord-
ing to their fitness (the better the fitness, the bigger the chance to be selected).

� Step 5 - Crossover. With a crossover probability cross over the parents to form
a new offspring (children). If no crossover was performed, the offspring is an
exact copy of parents.

� Step 6 - Mutation. With a mutation probability mutate new offspring at each
locus (position in chromosome).

� Step 7 - Accepting. Place new offspring in a new population.

� Step 8 - Replace. Use new generated population for a further run of the algo-
rithm.

� Step 9 - Test. If the stop criteria is met, stop, and return the best solution in
current population, else go to step 2.

The basic GA steps are very general. There are many variations or modification
to these general GA steps in solving different problems.

The fundamental questions are:

� What types of encoding are suitable to create chromosomes? Or how to repre-
sent the population?

� What operators are effective for crossover and mutation?

� How to select the parents for crossover?

� How to formulate the fitness evaluation function?

All the above questions could be answered in many different ways. For example,
there are many possible ways of encoding the chromosomes, typically used are bi-
nary strings (this will be illustrated in the next subsection of this chapter). However,
depending on the problem to be solved, integers or real numbers could also be used.
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3.2.3.2 Operator

As you can see from the genetic algorithm outline, the crossover and mutation are the
most important parts of the genetic algorithm. The performance is influenced mainly
by these two operators. Before we explain more about crossover and mutation, some
information about encoding the chromosomes is necessary.

How do we encode the chromosome? The chromosome should in some way
contain information about the solution that it represents. The chromosomes encoded
by a binary string (commonly used) could then look like this:

Chromosome 1 1001100100110110
Chromosome 2 1001111000011110

Each chromosome has one binary string. Each bit in this string can represent
some characteristic of the solution. Or the whole string can represent a number.

Crossover

After we have decided what encoding we will use, we can implement the crossover.
Crossover selects genes from parent chromosomes and creates a new offspring. The
simplest way is to choose randomly some crossover point where everything before
this point is copied from a first parent, and then everything after the crossover point
is copied from the second parent.

Crossover can then look like this (where ‘ — ’ is the crossover point):

Chromosome 1 10011 — 00100110110
Chromosome 2 10011 — 11000011110

Offspring 1 10011 — 11000011110
Offspring 2 10011 — 00100110110

There are other ways on how to make a crossover. For example, we can choose
more crossover points. Specific crossovers made for a specific problem can improve
performance of the genetic algorithm.

Mutation

After a crossover is performed, mutation takes place. The mutation process helps
prevent solutions in the population from falling into a local optimum. Mutation
changes randomly the new offspring. For binary encoding we can switch a few
randomly - chosen bits from 1 to 0 or from 0 to 1. Mutation can then be as follow:
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Original offspring 1 1001111000011110
Original offspring 2 1001100100110110

Mutated offspring 1 1000111000011110
Mutated offspring 2 1001101100110110

Mutation means different things for different data types. In the above example,
which uses a binary string, mutation involves flipping the bits in the string with
a given probability. A typical mutator for a tree, on the other hand, would swap
subtrees with a given probability.

The mutation depends on the encoding as well as the crossover. For example,
when we are encoding permutations, mutation could be exchanging two genes.

3.2.3.3 Parameters of GAs

Here, we cover three GA parameters namely: the crossover probability, mutation
probability and the population size.

Crossover and Mutation Probability

There are two basic parameters of GAs - crossover probability and mutation prob-
ability. Crossover probability determines how often crossover will be performed.
If there is no crossover, the offspring is an exact copy of the parents. If there is
a crossover, the offspring is made from parts of the parents’ chromosome. If the
crossover probability is 100%, then all offsprings are made by the crossover. If it
is 0%, the whole new generation is made from exact copies of chromosomes from
the old population (but this does not mean that the new generation is the same!).
Crossover is made in the hope that new chromosomes will have good parts of old
chromosomes and maybe the new chromosomes will be better. However, it is good
to leave some part of the population to survive into the next generation.

Mutation probability says how often the gene in the chromosome will mutate.
If there is no mutation, the offspring is taken (or copied) after the crossover without
any change. If mutation is performed, part of the chromosome is changed. If the
mutation probability is 100%, the whole chromosome is changed - if it is 0%, nothing
is changed. Mutation is made to prevent GAs from falling into local extreme, but this
should not occur very often because then the GAs will in fact change to a random
search.

Population size

Population size determines how many chromosomes are in a population (in one gen-
eration). If there are too few chromosomes, GAs have fewer possibilities to perform
a crossover and only a small part of the search space is explored. On the other hand,
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if there are too many chromosomes, the GA slows down. Research shows that af-
ter some limit values (which depend mainly on encoding and the problem), it is not
useful to increase the population size, because it does not solve the problem any
faster.

3.2.3.4 Selection

As you already know from the GA outline, chromosomes are selected from the pop-
ulation to be parents for crossover and mutation. The problem is how to select these
chromosomes. According to Darwin’s evolution theory the best ones should survive
and create new offsprings. There are many methods of selecting the best chromo-
somes, for example, roulette wheel selection, Boltzman selection, tournament selec-
tion, rank selection, steady state selection, elitism and others. Two of them will be
described in this section.

Roulette Wheel Selection

The Roulette wheel selection method provides a mechanism where the parents are
selected according to their fitness. The better the chromosomes are, the more chances
they will be selected. Imagine a roulette wheel where all the chromosomes in the
population are placed. The space the chromosomes occupy in the wheel determine
how good are the chromosomes. The ‘goodness’ of the chromosome is measured by
the probability of the reproduction. The probability of the reproduction is computed
by P (Xi) =

f(Xi)Pp
j=1 f(Xj )

where Xi is the i chromosomes.

Elitism

When creating a new population by crossover and mutation, we run the risk that we
will lose the best chromosome. The elitism method overcomes this by keeping the
best-fit chromosome. The method transfers the best chromosome (or a few best chro-
mosomes) to the new population. The rest of the steps are carried out as discussed.
Elitism can very rapidly increase the performance of the GA, because it prevents
losing the best found solution.

3.2.3.5 Further information on crossover and mutation operators

Crossover and mutation are two basic operators of GAs. The performance of GAs
is affected by how the operators are implemented. Listed below are some possible
ways of how a crossover and mutation operator could be performed:
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Crossover

1. Single point crossover - one crossover point is selected. Example: 10010111
+ 11010010 = 10010010

2. Two point crossover - where two crossover points are selected, the binary
string from the beginning of the chromosome to the first crossover point is
copied from one parent, the part from the first to the second crossover point is
copied from the second parent and the rest is copied from the first parent.

3. Uniform crossover - bits are randomly copied from the first or from the second
parent. Example: 11001011 + 11011101 = 11011111

4. Arithmetic crossover - some arithmetic operation is performed to make a new
offspring. Example: 11001011 + 11011111 = 11001001 (AND)

Mutation

1. Bit inversion - selected bits are inverted. Example 11001001 = 10001001

2. Add a small number (for real value encoding) - the selected values are added
(or subtracted) with a small number. Example: (1.29 5.68 2.86 4.11 5.55) =
(1.29 5.68 2.73 4.22 5.55).

Some drawbacks of genetic algorithms

The first drawback of a GA is that it has no concept of an ‘optimal solution’. It
cannot be proven that the solution is optimal. The second drawback of the GA is that
it does not address when to stop evolving in terms of the length of time, number of
iterations and the population size you would like to explore during the search for the
best solution.

3.3 Neural Networks

3.3.1 Biological inspiration

The human brain is made up of more than 100 billion nerve cells. Each of these
nerve cells is known as a neuron. Neurons are spider-shaped cells (Figure 3.1) and
have three basic elements namely: the dendrites, the soma and the axon.

The dendrites receive signals from other neurons. These signals are electric
impulses that are transmitted across a synaptic gap by means of a chemical process.

The soma, or cell body, sums the incoming signals. When a sufficient input is
received, the cell fires; that is, it transmits a signal over its axon to other neurons.
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Figure 3.1: The nerve cell.

An axon is the winding tail of the neuron. Its length could be up to 1 meter
long. Fatty covering called a myelin sheath often surrounds axons. Myelin acts like
insulation around an electric wire and helps speed nerve messages. Axons of one
neuron are linked to the dendrites of other neurons. Using this link, each neuron
is connected to as many as 25,000 other neurons. The brain has trillions of these
interconnections and different pathways for nerve signals to flow through.

The study of artificial neural networks is trying to model or mimic the biological
interconnections of the neurons.

3.3.2 Historical perspective

The concept of using neural networks (NNs) came into existence in the mid 1940s.
In 1943, McCulloch and Pitts designed boolean logic by combining many simple
units. The weights on a McCulloch-Pitts network are set so that each unit performs
a particular logic function [155]. These logic functions are combined to produce the
desired network output. The McCulloch-Pitts network was generally regarded as the
first NN. Then came Hebb [96], a psychologist at McGill University, who published a
biologically plausible learning rule. Hebb’s work formed some important theoretical
aspects of the learning algorithms for NNs. In around 1954, Minsky introduced the
reinforcement learning (RL), a term borrowed from animal learning literature. RL
was also independently introduced and applied in control theory by Waltz [228] and
Michie [159]. In 1957, Bellman created dynamic programming (DP). DP provides
an efficient mechanism for sequential-decision making which was found to be useful
in reinforcement learning in the 90s. In 1958, Frank Rosenblatt coined the term
perceptron, which became a popular word used in the NNs for the 80s and 90s.
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Perceptron is a single layer NN, hence it has no hidden layer.

Then came the least mean square (LMS) algorithm, also known as the Widrow-
Hoff rule or delta rule, developed by Bernard Widrow and Marcian Hoff of Stanford
University. This algorithm was applied to a simple adaptive linear neuron (Adaline).

In the 70s, much attention was directed towards the field of artificial intelligence
(AI). This shift in focus was partly due to the Minsky and Papert analysis which
challenged the incipient neural theory by establishing criteria for what a particular
network could and could not do [52]. However, during these silent years, three
pioneering works on NNs were done. These are listed below:

� Werbos [237] proposed the concept of backpropagation (BP) for forecasting
analysis.

� Grossberg [89] proposed a learning algorithm for the instar and outstar net-
work configuration.

� Willshaw and Ver Der Malsburg [241] proposed a self-organizing feature map
on biological grounds to explain the problem of retinotopic mapping from the
retina to the visual cortex.

It is interesting to observe that what happened in the 70s is repeated in the early
80s by independent researchers. To begin with, we have Hopfield [102], who intro-
duced the network architecture that has come to be known as the Hopfield network.
The Hopfield network has great similarity to the ‘Brain-State-in-a-Box’ (BSB). Both
the networks are fully interconnected. Therefore, each unit is connected to every
other unit. The only difference is that BSB network has self-connections while the
Hopfield network does not have. At about the same time, Kohonen independently
introduced self-organizing feature mapping to capture the essential features of com-
putational maps in the brain [123]. The Kohonen network is quite similar to the Will-
shaw and Ver Der Malsburg self-organizing feature map. In the same year, Parker
[182] independently discussed the BP algorithm. The BP algorithm, sometimes also
known as the generalized delta learning rule, was later reinvented and made popular
by Rumelhart and McClelland in 1986 [202].

In the mid 80s, there was the development of thermodynamic models. Two
examples of such models are harmony theory [211] and the Boltzmann machine.
Ackley et al. [1] developed a learning rule using the Boltzmann machine. These
approaches have much in common. Both employ binary units whose values are
determined probabilistically according to the Boltzmann equation.

A sudden upsurge of interest in NNs occurred after the publication of the book by
Rumelhart and McClelland [202]. The following year, the IEEE conducted the first
conference on neural networks. The International Neural Network Society (INNS)
was also formed in the same year and the first issue of its journal, Neural Networks,
appeared early in 1988. Thereafter the IEEE Control Systems Magazine devoted at
least three special issues to the use of NNs for control (April 1988, 1990 and 1992).
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In the late 80s to early 90s, we have seen many developments in NNs. New NN
structures such as: the radial basis function network [41], bidirectional associative
memories [126], B-splines network [164], digital neurocomputer [97], functional-
link networks [181], knapsack packing networks [98] and wavelet networks [248]
were proposed. Different combinations of network topologies to improve the rep-
resentational structure, such as recurrent backpropagation which combines feedback
and feedforward topologies, were explored [3, 188, 240].

During this period a number of papers were published seeking to improve the BP
algorithm. For examples, backpropagation with momentum, delta-bar-delta [110],
Quickprop [76], decoupled momentum [160] and adaptive backpropagation [183].
The number of books published on NNs have also increased manyfold [22, 36, 27,
45, 52, 65, 69, 84, 99, 77, 125, 95, 158, 172, 214, 219, 224, 232, 231, 244].

3.3.3 Neural network structures

3.3.3.1 Basic units

The basic processing element of NNs is often called a neuron (analogy with neu-
rophysiology), unit, node, or sometimes cell. In this book, we will simply call this
basic element a unit. Each unit has multiple inputs and a single output, as shown in
Figure 3.2. Many of these basic processing elements may be considered to have two
basic components, namely the summer and the activation function.
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Figure 3.2: The basic elements of neural networks.

Summer

The summer (or also known as adder) sums up the input signals. The respective input
signals, before being summed up by the summer, are weighted by the respective link
or synapses of the neuron. In other ways, the summer is doing a linear combination
of the weighted input signals.



40

Activation function

The activation function transforms the summer output to neuron output through a
non-linear function. This transformation squashes (or limits) the amplitude of the
output neuron to some finite values. There are a number of different activation func-
tions. These activation functions could be classified as:

1. Differentiable/non-differentiable.

2. Pulse-like/step-like.

3. Positive/zero-mean.

Each of the above classifications are briefly described and examples given:

� Classification 1 distinguishes smooth from sharp functions. Smooth functions
are needed for some adaptation algorithms, such as backpropagation, whereas
discontinuous functions are needed to give a true binary output. Examples
of smooth functions are: sigmoid function, hyperbolic tangent function and
radial basis function (RBF). An example of a sharp function is the hard-limiter
or threshold transfer function.

� Classification 2 distinguishes functions which only have a significant output
value for inputs near to zero from functions which only change significantly
around zero. For examples, the RBF can be pulse-like and the hard-limiter
step-like.

� Classification 3 refers to step-like functions. Positive functions change from 0
at �1 to 1 at 1; zero-mean changes from -1 at �1 to 1 at 1. The sigmoid
function is a positive function and the hyperbolic tangent function is zero-
mean. A hard-limiter function can either be positive or zero-mean function
depending on how the limit is defined.

There are cases where the network topology consists of rule units; each of the
units corresponds to a specific fuzzy rule. Therefore, all the units form a general
fuzzy rule [218].

3.3.3.2 Network topology

There are basically two network topologies, namely feedforward neural network
(FNN) and recurrent neural network (RNN). Figure 3.3 shows the basic structures of
FNN and RNN. Both of these networks can have either fully connected or partially
connected structures; and either single layer or multilayer. A single layer neural
network (SNN) has no hidden layer, hence it has only an input layer and an output
layer (sometimes also known as a two layers network). A multilayer neural network
(MNN) has at least one hidden layer.
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Feedforward Neural Network

Recurrent Neural Network

Inputs Outputs

neuron or unit

OutputsInputs

Figure 3.3: Difference between feedforward and recurrent neural networks.

Feedforward neural networks

A FNN is completely feedforward with no past state of the network feeding back to
any of its units. FNN is classified as fully connected, if every unit in the layer of
the network is connected to every other unit in the adjacent forward layer. However,
if some of the communication links (or sometimes called synaptic connections) are
missing from the network, we say that the network is partially connected.

FNN is static mapping, so theoretically it is not feasible to control or identify
dynamic systems. To extend this essentially steady state mapping to the dynamic
domain would mean to adopt an approach similar to the linear theory of ARMA
(autoregression moving average) modelling. Here, a time series of past real plant
inputs and outputs values are used as inputs to the FNN with the help of tapped
delay lines (TDL). The nonlinear dynamic plant in discrete time is

yp(k) = f(yp(k � 1); : : : ; yp(k � ny); u(k � 2); : : : ; u(k � nu)) (3.1)

where f(:) is the unknown nonlinear function, yp is the plant output, u is the control
signal, ny and nu are the number of past outputs and inputs of the plant depending
on the plant order. To represent this plant, the NN model is fed with the past output
and input values of the plant as follows (see Figure 3.4):

ym(k) = NN(yp(k � 1); : : : ; yp(k � ny); u(k � 2); : : : ; u(k � nu)) (3.2)
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This assumes that the plant order is known and its states are measurable.

According to Levin [140], to represent the dynamics of the system sufficiently,
at least l past measurements of the real plant output and input feeding back to the
FNN input are required, where l � ny + nu + 1.

The assumptions that all the plant outputs and inputs are measurable and avail-
able for feedback is sometimes unrealistic; for instance some plant outputs may not
be accessible for sensors (such as rotor currents in a squirrel cage induction motor)
or the required sensors may be too expensive or unreliable. Hence for such a system,
the FNN may not be suitable and a RNN may be preferred. This will be discussed in
the next subsection.

Recurrent neural networks

A RNN distinguishes itself from a FNN in that it has at least one feedback loop. It
is claimed that the presence of feedback loops has a profound impact on the learning
capability of the network and on its performance [188, 185, 240, 133]. In the sense
of control theory, the feedback loop makes a RNN a nonlinear dynamic system. The
feedback loops commonly involve unit delays if dealing with discrete-time systems,
or integrators in the continuous-time case. RNNs may be preferred to FNNs when:

� The measured plant outputs are highly corrupted by noise.

� The dynamics of the nonlinear process are complex and unknown.

� Direct state feedback is impossible and only partial measurement is available
from the plant.

There are apparently many structures of RNN using different combinations of
feeding back the states to the units in each layer. In RNN, the more general is
the structure, therefore more feedback interconnections (or fully-connected recurrent
neural network (FRNN)), the ‘richer’ is the dynamic representation. Hence, FRNNs
are sometimes said to have global dynamic representation. The more general types
are the Jordan, Elman and Williams-Zipser networks. In a Jordan network, the past
output values of the network are fed back into the hidden units or the input layer. In
the Elman network, the past values of the hidden units are fed back into themselves
[75, 134].

One of the problems in using FRNNs is the stability issue [127, 222]. Here, the
topic is addressed by looking at the recurrent weights. FRNNs are normally trained
by using the BP algorithm. To improve the stability of FRNNs, it is proposed here
that the total dynamic feeding back has to be less than 1. Hence, by considering the
FRNN of an Elman network trained by a BP algorithm,

0 <

pX
j=1

wrij(k)f
0

hj(Shj(k � 1)) < 1 (3.3)
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where wrij(k) is the recurrent weight at time step k, p is the number of hidden units
and fhj is the activation function of the jth hidden unit, where usually the sigmoid or
hyperbolic tangent function is used. Since j f 0

hj;max j = 1, wrij has to be bounded
as follows to ensure FRNN stability:

0 < wrij <
1

p
(3.4)

Single layer and multilayer neural networks

NNs in feedforward or recurrent structures can be connected in a single layer neural
networks (SNNs) or multilayer neural networks (MNNs). The radial basis function
network (RBFN), B-spline network, functional-link network (FLN), CMAC, lattice
associative memory network, Adaline and perceptron are feedforward SNNs. Mul-
tilayer perceptron (MLP) is a feedforward MNN. Boltzmann machine and bidirec-
tional associative memories (BAM) could be classified as recurrent MNNs. Adaptive
resonance theory (ART), Kohonen and Hopfield networks could be classified as re-
current SNNs.

Both the MNN and SNN are universal approximators. A MNN with one hidden
layer and sufficient hidden units can approximate any arbitrary nonlinear function
[86, 62, 103, 190, 104, 87, 114]. Although a MNN with two hidden layers may give
a better approximation for some specific problems [213], DeVilliers and Barnard
[68] have demonstrated that a MNN with 2 hidden layers are more prone to fall into
local minima.

A SNN is sometimes categorized as locally generalizing [6]. The network is
considered local since only a small subset of adaptable parameters can potentially
affect the network output in a local region of the input space. The MNN is some-
times categorized as globally generalizing. This is because one or more adaptable
parameters in the network can potentially affect the network output at every point in
the input space.

3.3.4 Learning algorithms

Basically, there are three types of neural network learning algorithms. These are:
supervized learning, reinforcement learning and unsupervized learning.

3.3.4.1 Supervized learning

Early learning algorithms

The early learning algorithms are designed for single layer neural networks. They
are generally more limited in their applicability. Some of the early algorithms are
perceptron learning, LMS learning and Grossberg learning.
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Perceptron learning

Rosenblatt’s single layer perceptron is trained as follows:

1. Randomly initialize all the networks weights.

2. Apply the inputs x and calculate the sum of each unitS j(k) =
Pq

i=1 xi(k)wij(k).

3. The outputs from each unit are

Oj(k) =

�
1 Sj(k) > threshold
0 otherwise

4. Compute the errors ej(k) = Odj(k) � Oj(k) where Odj(k) is the known
desired output value.

5. Update each weight as wij(k + 1) = wij(k) + �xi(k)ej(k).

6. Repeat steps 2 to 4 until the errors reach the satisfactory level.

LMS or Widrow-Hoff learning

The least mean square (LMS) learning algorithm, sometimes known as Widrow-
Hoff learning or delta rule, is quite similar to the perceptron learning algorithm. The
differences are:

1. The error is based on the sum of inputs to the unit S rather than the output
binary value from the unit O. Therefore

ej(k) = Odj(k)� Sj(k)

2. The linear sum of the inputs S are passed through bipolar sigmoidal functions,
which produces the output +1 or -1, depending on the polarity of the sum.

Grossberg learning

The Grossberg learning algorithm, sometimes known as instar and outstar training,
is updated as follows [231]:

wi(k + 1) = wi(k) + �[xi(k)� wi(k)]

where xi could be the desired input values (instar training) or the desired output
values (outstar training) depending on the network structure.
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3.3.4.2 First order gradient methods

Backpropagation

The backpropagation (BP) algorithm is the most well known and widely used among
other learning algorithms described in the literature. It is based on steepest-descent
techniques extended to each of the layer in the network by the chain rule. Hence,
the algorithm computes the partial derivative @E(k)

@W (k�1) , of the error function with
respect to the weights. Suppose we want to model a nonlinear plant using a NN

y
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p

Figure 3.4: Multilayer feedforward neural network modelling a nonlinear
dynamic plant.

(see Figure 3.4). The NN model output is ym. The error function is defined as
E(k) = 1

2 [yp(k)�ym(k)]2 where yp is the plant output and em(k) = yp(k)�ym(k).
The objective is to minimize the error functionE(k) by taking the error gradient with
respect to the parameters or weight vector, say W , that is to be adapted. The weights
are then updated by using

W (k) =W (k � 1) + �(� @E(k)

@W (k � 1)
) (3.5)

where � is the learning rate and

@E(k)

@W (k � 1)
= �em(k) @ym(k)

@W (k � 1)
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= �em(k) @Oo(k)

@W (k � 1)

The network output is Oo(k) = ym(k), in this example.

This standard BP algorithm is simple to implement and computationally less
complex than other modified forms of BP algorithms. Nevertheless, it has some
disadvantages such as:

1. Slow convergence speed.

2. Sensitivity to initial conditions [124].

3. Trapping in local minima.

4. Instability if learning rate is too large.

Despite the above disadvantages, it is popularly used. There are numerous extensions
to improve the BP algorithm. Some of the more common techniques are as follows.

Backpropagation with momentum

The basic improvement to a BP algorithm is to introduce a momentum term in the
weights updating equation [201]. Hence, the weights updated by backpropagation
with momentum (BPM) are

W (k) =W (k � 1) + (�� @E(k)

@W (k � 1)
) + ��W (k � 1) (3.6)

where the momentum factor � is commonly selected between 0 < � < 1. Adding
the momentum term improves the convergence speed and helps the network from
being trapped in a local minimum.

A modification to equation (3.6), such as

W (k) =W (k � 1) + (�� @E(k)

@W (k � 1)
) + ��W (k � 1) + ��W (k � 2) (3.7)

was proposed by Nagata et al. [168], where � is a constant value decided by the
user. Nagata et al. [168] claimed that the � term reduces the possibility of the
network being trapped in the local minimum. However, this seems to be repeating
the role of the � term. Hence, the advantage of adding the � term is not clear at the
moment.

Delta-bar-delta

The delta-bar-delta (DBD) learning rules use an adaptive learning rate to speed up
the convergence. The adaptive learning rate adopted is based on a local optimization
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method. It is an improvement from the delta-delta learning rule. This technique
uses gradient descent for the search direction, and then applies individual step sizes
for each weight. This means that the actual direction taken in weight space is not
necessarily along the line of the steepest gradient [110].

If the weight updates between consecutive iterations are in opposite directions,
the step size is decreased, otherwise it is increased. This is prompted by the idea that
if the weight changes are oscillating, the minimum is between the oscillations, and
a smaller step size might find that minimum. The step size may be increased again
once the error has stopped oscillating.

Let �ij(k) denote the learning rate for the weight w ij(k), then

�ij(k + 1) = �ij(k) + ��ij(k) (3.8)

and ��ij(k) is as follows:

��ij(k) =

8<
:

� � ij(k � 1) ij(k) > 0
���ij(k) � ij(k � 1) ij(k) < 0
0 otherwise

(3.9)

where  ij(k) =
@E(k)
@wij

and � ij(k) = (1 � ") ij(k � 1) + " � ij(k � 1). The " is
a positive constant. �; � and " are parameters specified by the user. The quantity
� ij(k) is basically an exponentially decaying trace of gradient values. When the �
and � are set to zero, the learning rates assume a constant value as in a standard BP
algorithm.

Results cited by Jacobs [110] indicate that using momentum along with the DBD
algorithm can enhance performance considerably. However, it can also make the
search diverge wildly; especially if � is moderately large. The reason is that mo-
mentum ‘magnifies’ learning rate increments and quickly leads to inordinately large
learning steps. One possible solution is to keep the � factor very small, but this can
easily lead to slow increase in � and little speedup.

Simulations have also shown that the DBD algorithm is very sensitive to small
variations in the value of its parameters, especially �. To overcome these problems
the decoupled momentum is suggested.

Second order gradient methods

Second order gradient methods make use of second derivatives of the error in the
weight space. The key to second order gradient methods is the Hessian matrix H .
The Hessian matrix is a matrix of second derivatives ofE with respect to the weights
W .

H(k) =
@2E(k)

@W (k � 1)2
(3.10)
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The Hessian matrix contains information about how the gradient changes in different
directions in weight space. It answers the question: ‘How does the gradient change
if I move off from this point in that direction?’.

Newton

The Newton method weights update are [58]

W (k) =W (k � 1) + �[H(k)]�1
@E(k)

@W (k � 1)
(3.11)

However, the Newton method is not commonly used because calculating the Hessian
matrix is computationally expensive. Furthermore an Hessian matrix may not be
positive definite at every point in the error surface. To overcome the problem, several
methods have being proposed to approximate the Hessian matrix.

Gauss-Newton

The Gauss-Newton method produces an n� n matrix which is an approximation to
the Hessian matrix, having elements represented by

H(k) =  T (k) (k) (3.12)

where  (k) = @e(k)
@W (k�1) [145]. However, the Gauss-Newton method may still have

ill-conditioning if H(k) is close to or is singular.

Levenberg-Marquardt

The Levenberg-Marquardt (LM) method overcomes this difficulty by including an
additional term � which is added to the Gauss-Newton approximation of the Hessian
matrix giving

H(k) =  T (k) (k) + �I (3.13)

where � is a small positive value and I is the identity matrix. � could also be made
adaptive by having

� =

�
�� Ec(k) > Ec(k � 1)
�
� Ec(k) < Ec(k � 1)

where � is a value decided by the user. Notice that when � is large, the algorithm
becomes a backpropagation algorithm with learning rate 1

� , and when � is small, the
algorithm becomes Gauss-Newton.
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Quickprop

Fahlman [76] proposed the Quickprop method using heuristics based loosely on the
Newton method. Fahlman highlighted that the Quickprop algorithm is based on two
risky assumptions:

� The error vs weight curve for each weight can be approximated by a parabola.

� The change in the shape of the error curve, as seen by each weight, is not
affected by all the other weights that are changing at the same time.

Hence, Quickprop implicitly assumes that the Hessian matrix is diagonal. The
weights update of the Quickprop algorithm, �W (k), is as follows:

�W (k) =
	(k)

	(k � 1)�	(k)
�W (k � 1)

where 	(k) = @E(k)
@W (k�1) . Fahlman claimed that when applied iteratively Quickprop

is very efficient.

Conjugate gradient decent

The idea behind conjugate gradient decent (CGD) is to choose search directions that
complement one another. This is to avoid the possibility of ‘undoing’ the minimiza-
tion of previous iterations, by choosing appropriate search directions.

Assume that the error surface is quadratic in weight space.

E(k) = CTW (k � 1) +
1

2
W T (k � 1)H(k)W (k � 1) (3.14)

where C is a constant matrix and H is a Hessian matrix, constant throughout the
weight space. The search direction at iteration k is denoted by v(k).

Set the first direction, v(1), to minus the gradient � @E(1)
@W (0) . Set subsequent di-

rections using:

v(k) = � @E(k)

@W (k � 1)
+ �(k)v(k � 1) (3.15)

where �(k) is a scalar value like an adaptive momentum term. � may be defined in
a number of ways, each of which produces conjugate directions. The Polak-Ribiere
rule for � is [99]

�(k) =
[	(k)�	(k � 1)]T [	(k)]

[	(k � 1)]T [	(k � 1)]
(3.16)
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The Hestenes-Stiefel rule for � is [163]

�(k) =
[	(k � 1)�	(k)]T [	(k)]

v(k)T [	(k � 1)]
(3.17)

CGD will reach the minimum of a quadratic error surface in, at most, as many
steps as there are dimensions of the weight space. For non-quadratic error surfaces,
the minimum may not have been reached after this number of steps. Instead, the
algorithm is restarted by setting � to zero for a step, and the procedure continues as
before.

Conjugate gradients give only a search direction, not a step size. Furthermore,
the power of conjugate gradients is only apparent if the error is minimized along the
current search direction.

3.3.4.3 Reinforcement learning

Thus far, we have assumed that the correct ‘target’ or the desired output values are
known for each time step or each input pattern. But, in some situations, there is
less detailed information available. In the extreme case there is only a single bit of
information, saying whether the output is right or wrong. Reinforcement learning
(RL) procedures are applicable to this extreme case. Hence, RL is sometimes called
‘learning with a critic’. One advantage of RL is that it does not need to compute
derivatives. This makes it suitable for some complex systems where derivatives are
difficult to obtain. The major disadvantage of RL is its slow (inefficient) learning
process [85, 141]. Some of the classifications of RL are: delay and immediate RL
[119]; associative and nonassociative RL [95].

In delay RL, the environment only gives a single scalar reinforcement evaluation
after a sequence of input state vectors during the system operation. For immediate
RL, the environment immediately returns a scalar reinforcement evaluation of the
input state vectors.

In nonassociative RL, the reinforcement is the only input that the learning sys-
tem receives from its environment. In associative RL, the environment provides
additional forms of information other than the reinforcement. The combination of
adaptive critic element (ACE) and associative search element (ASE) controller de-
scribed in Barto et al. [21] is an example of learning by delay and associative RL.

Three basic RL algorithms are presented here. Other developments in RL al-
gorithms not discussed here are Temporal Difference (TD) [217], Q-learning [233],
Heuristic dynamic programming [238] and TD-Gammon [220].
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Linear reward-penalty learning

Linear reward-penalty learning was proposed by Narendra and Thathachar [170].
When the reinforcement signal is positive (+1), the learning rule is

Pi(k + 1) = Pi(k) + a[1� Pi(k)]

Pj(k + 1) = (1� a)Pj(k) for j 6= i

If the reinforcement signal is negative (-1), the learning rule is

Pi(k + 1) = (1� b)Pj(k)Pi(k)

Pj(k + 1) =
b

r � 1
+ (1� b)Pj(k) for j 6= i

where a and b are learning rates, Pi(k) denotes the probability at iteration k and r
is the number of actions taken. For positive reinforcement, the probability of the
current action is increased with relative decrease in the probabilities of the other
actions. The adjustment is reversed in the case of negative reinforcement.

Associative search learning

In the associative search learning the weights are updated as follows [21]:

wi(k + 1) = wi(k) + �r(k)ei(k) (3.18)

where r(k) is the reinforcement signal and e is eligibility. Positive r indicates the oc-
currence of a rewarding event and negative r indicates the occurence of a punishing
event. It can be regarded as a measure of the change in the value of a performance
criterion. Eligibility reflects the extent of activity in the pathway or connection link.
Barto et al. [21] generated exponentially decaying eligibility traces e i using the fol-
lowing linear differential equation

ei(k + 1) = Æei(k) + (1� Æ)y(k)xi(k) (3.19)

where Æ, 0 � Æ < 1 determines the trace decay rate, x is the input and y is the output.

Adaptive critic learning

The weights update in a critic network is as follows [21]:

wi(k + 1) = wi(k) + �[r(k) + 
�(k)� �(k � 1)] �xi(k) (3.20)

where 
, 0 � 
 < 1, is a constant discount factor, r(k) is the reinforcement signal
from the environment and �xi is the trace of the input variable xi. �(k) is the predic-
tion at time k of eventual reinforcement which can be described as a linear function
of �(k) =

P
i wi(k)xi(k). The adaptive critic network output (ro), the improved or

internal reinforcement signal, is computed from the predictions as follows:

ro(k) = r(k) + 
�(k)� �(k � 1) (3.21)
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3.3.4.4 Unsupervized learning

In this section, three important unsupervized learning algorithms are discussed, namely:
Hebbian learning (and its derivatives), Boltzmann machines learning and Kohonen
self-organizing learning.

Hebbian learning

Hebbian learning is sometimes called correlation learning. The weights are updated
as follows:

wij(k + 1) = wij(k) + Si(k)Sj(k)

Sj(k) =
X
i

(Oi(k)wij (k))

wherewij(k) is the weight from ith unit to jth unit at time step k, Sj is the excitation
level of the source unit or jth unit and O i is the excitation level of the destination
unit or the ith output unit.

Hebb’s concept involves no ‘teacher’. In the Hebbian system, learning is a purely
local phenomenon, involving only two units and a synapse; no global feedback sys-
tem is required for the neural pattern to develop.

Since Hebb introduced his learning rule, the rule has been modified and im-
proved by several researchers.

Signal Hebbian learning

A network using the sigmoidal activation function with Hebbian learning is said to
employ signal Hebbian learning. In this case, Hebbian equations are modified to the
following form:

Oi(k) = f(Si(k)) =
1

1 + e�Si(k)

wij(k + 1) = wij(k) +Oi(k)Oj(k)

Differential Hebbian learning

A variant of signal Hebbian learning is to calculate the product of the previous
changes of the outputs to determine the weight change. This method is called differ-
ential Hebbian learning, and the equation is as follows:

wij(k + 1) = wij(k) + [Oi(k)Oi(k � 1)][Oj(k)Oj(k � 1)]
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Modified Hebbian learning or Oja learning

The Oja learning rule is [77]

wij(k + 1) = wij(k) + �Oj(k)[Oi(k)�Oj(k)wij (k)]

Hertz et al. [99] proved that the weights have the desired properties and pointed
out that the weight updates depend on the difference between the input O i and the
backpropagated output Ojwij . Note that Oja’s rule maximizes the average squared
output.

Boltzmann machines learning

The Boltzmann machine training algorithm uses a kind of stochastic technique known
as simulated annealing to avoid being trapped in the local minima of the network en-
ergy function. The Boltzmann machines architecture has interconnections among the
input units, the hidden units and the output units. The Boltzmann machine algorithm
is as follows:

1. Initialize weights.

2. Calculate the activation as follows:

� Select an initial temperature.

� Until thermal equilibrium, repeatedly calculate the probability that j is
active by

Pj =
1

1 + e��Ej=T

where T is the temperature, �Ej is the total input received by jth unit
and the activation level of unit j is set according to this probability.

� Exit when the lowest temperature is reached. The pattern of activations
upon equilibrium represents the optimized solution. Otherwise, reduce
the temperature by a certain annealing schedule and repeat step 2.

3. Update weights by �wij = c(P+
ij � P�

ij ), where c is constant.

Kohonen self-organizing learning

The Kohonen self-organizing learning algorithm is based on unsupervized learning
techniques. The network is trained according to the following algorithms:

1. Apply an input vectorX .
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2. Calculate the distance Dj (in n dimensional space) betweenX and the weight
vectors Wj of each unit. In Euclidean space, this is calculated as follows:

Dij(k) = k(xi(k)� wij(k))k (3.22)

3. The unit that has the weight vector closest to x is declared the winner. This
weight vector, called Ww, becomes the centre of a group of weight vectors
that lie within a distance D from Ww.

4. Train this group of nearby weight vectors according to the formula that fol-
lows:

wij(k + 1) = wij(k) + �[x(k) � wij(k)]

for all weight vectors within a distance D of Ww.

5. Perform steps 1 through 4, cycling through each input vector until conver-
gence.

3.3.5 Training of neural networks

To train the neural networks, first we must have a collected set of data with known
input and output (or result). Partition these data into two groups, one for training
and the other for validation. Note that the validation set could be a small subset
of the collected data. The validation set is essential in order to test that the neural
networks are correctly trained. The neural network training process could then be
implemented as follows:

1. Set the number of the hidden layer and the number of neurons for the hidden
layer, input layer and output layer. Initiate the weights and bias. Decide the
learning rate value.

2. Train the networks by performing the following steps:

� Feed the input data to the input layer of the neural network.

� Compute the neural network output values.

� Obtain the error em(k) and calculate eo.

� Update the weights and the bias using the updating rule.

� Check if the stopping criteria are met, else repeat the training step.

3. Validate the trained neural network using the validation data.

Note that the stopping criteria could be:

� The error is less than the desired value.

� The number of epoch is reached.
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Recommendation

It is recommended that the weights and the learning rate be set between 0 and 1.
Learning rate that is very small may take a long time to converge, and a learning
rate that is too big may result in system stability problem. If backpropagation with
momentum is used, the momentum value could be set at about 0.5. For the activation
function, use the tanh(x) as it provides more flexibility than the sigmoid function.
This is because tanh(x) provides wider values ranges between 1 and -1, whereas the
sigmoid function is between 0 and 1.

In general, one hidden layer is sufficient to model or map all non-linear dynamic
systems with sufficient hidden neurons. The number of hidden neurons could be
approximated based on the order of the dynamic systems, if the order of the dynamic
system could be estimated.

3.4 Fuzzy Logic

The fuzzy logic technique has emerged as one of the most successful techniques in
the growing field of intelligent systems as far as applications is concerned. It was
successfully implemented in both civilian and defence industry for real applications.

3.4.1 Biological inspiration

In general, human beings are not able to describe certain actions in a precise and/or
quantitative manner. All human controls are descriptive such as in the form of high,
low or medium. For example, a driving instructor would teach his student on how
much pressure he needs to apply to the acceleration and brake pedals by using word
such as press hard, press harder or press less.

3.4.2 Historical perspective

The concept of fuzzy logic was introduced by L.A. Zadeh in 1965. In the 60s and
70s, fuzzy logic was not well received as a scientific approach of problem solving.
However, in the early 1980s, thanks to the number of successful applications and the
increase in publicity of fuzzy logic as an alternative way of solving mathematically
difficult model problems, the concept of fuzzy logic became an interest to many
researchers and applied engineers.

3.4.3 Basic elements of fuzzy systems

The fuzzy logic system involves three primary processes: (1) Fuzzification, (2)
Fuzzy linguistic inference and (3) Defuzzification, as depicted in Figure 3.5.
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DefuzzificationFuzzification Linguistic 

Figure 3.5: Block diagram of a fuzzy system.

3.4.3.1 Fuzzification

Fuzzification is the process of decomposing the system inputs (X1; X2; :::) and out-
puts (Y 1; Y 2; :::) into one or more fuzzy sets. The universe of discourse is parti-
tioned into a number of fuzzy subsets and each subset is assigned a linguistic label,
for example, Positive large, Positive small. A membership function �X1, �X2... etc.
is then determined for each fuzzy subset.

NL

Membership of X1

0.0

1.0

5025

NS

X1

-25-50

PSZR

0
-35

0.4(X1=NL)

0.6(X1=NS)

PL

Figure 3.6: Membership function for one (X1) of the three inputs.

Figure 3.6 depicts a system of fuzzy sets for input X1 with triangular member-
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ship functions. The linguistic variables used, as shown in the above figure, include:
NL-Negatively Large, NS-Negatively Small, ZR-Zero, PS-Positively Small and PL-
Positively Large.

The degree to which the numerical input values belong to each of the appropriate
fuzzy sets is determined via the membership functions. From the example shown in
Figure 3.6, input X1 has a membership of 0.6 in NS and 0.4 in NL.

3.4.3.2 Fuzzy lingusitic inference

The fuzzy inference engine consists of the rule base, which is formed by assigning
fuzzy relationships of the input’s fuzzy subsets to the output’s fuzzy subsets. The
rules are generated such that the constructed inference system is complete, i.e. all
combinations of the inputs are formed in the rule base of the fuzzy system. Fig-
ure 3.7 shows the rule-based matrix for a three-input fuzzy system, for the case of
X1=NL. The four other matrices for X1=NS, ZR, PS and PL are not shown here.

ZR

NLNLNLNL

NL

NLNLNL

NL NL NL

ZR

X2

X3

For X1 = NL

Rule will be fired
if X1=NL, X2=PL 
AND X3=PL

NL

PS PS

PS PLZRNS

ZR

NL

ZR

PS

PL

NL ZR PS

NS

PS

NL ZR

NL PL

NL

Figure 3.7: Rule-based matrix defining rules of the fuzzy system.

Figure 3.8 shows how the output membership function contributed by each fuzzy
rule can be determined using fuzzy approximate reasoning. From the rule-based ma-
trix, one of the rules that would have been fired given such an input combination, is:

IF X1 is NL AND X2 is ZR AND X3 is PS THEN Y is ZR
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of X3

Membership Membership

of Y

Membership 

NL
PL NS

of X1 of X2

NS

Membership 

PS

X2 YX1

RULE 1

RULE N

ZR
NL

X3

ZR

Figure 3.8: Fuzzy inference using fuzzy approximate reasoning.

The individual output (Y1, Y2, ..., Yn) recommended by each rule (1 to n) is
then aggregated (using the union operator) as shown in Figure 3.9 to form the com-
bined fuzzy output.

3.4.3.3 Defuzzification

The output of the fuzzy inference process is an aggregated membership function for
each output variable. Defuzzification is thus required to convert such aggregates into
scalar/crisp values. There are various techniques for defuzzification, namely:

� Center-of-gravity.
This method determines the center of the area below the combined member-
ship function. The area of overlap (as shown in Figure 3.9) is only considered
once. The defuzzified output for the discrete case is calculated by:

y� =
Pl

i=1 yi�Y (yi)Pl
i=1 �Y (yi)

(3.23)

� Center-of-sums.
The center-of-sums method is a faster method as compared to the center-of-
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Membership of Y
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Figure 3.9: Membership function of aggregated output y.

gravity, and the area of overlap is taken twice. The defuzzified output is:

y� =
Pl

i=1 yi
Pn

k=1 �CLU(k)(yi)Pl
i=1

Pn
k=1 �CLU(k)(yi)

(3.24)

where m is the number of clipped output fuzzy sets from each rule.

� First-of-maxima.
This method takes the smallest value of the fuzzy domain with maximal mem-
bership degree in the combined fuzzy output set. It is as depicted in Figure
3.10.

3.5 Expert Systems

The view here is that an expert system has a role to play in modelling the human
intellect. Although such a system has been viewed as a conventional artificial intel-
ligence approach, it still holds some key functions in modelling our brain. The brain
is not just able to learn. But there are some functions that could be hardcoded. For
example, the instinctive and reactive behaviour such as the instantaneous withdrawn
of our hand when suddenly touching a hot object or the natural behaviour such as the
baby’s ability to take the first breath, suck milk and cry for attention. These func-
tions or knowledge are normally not taught but are embedded in our gene such that
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Figure 3.10: Graphical representation of First-maxima defuzzification
method.

the brain will activate the process naturally. Hence, an expert system that is based on
predefined knowledge may have some analogy to these functions.

Expert systems are software code that contains the knowledge and inference or
reasoning capability, which imitate human reasoning in problem solving in a partic-
ular domain.

Most expert systems are developed via specialized software tools called shells.
Shells are normally equipped with inference or reasoning mechanisms, such as back-
ward chaining or forward chaining (or both), tools for writing hypertext and con-
structing user friendly interfaces, for manipulating lists, strings and objects and for
interfacing with external programs and databases.

Some of the expert systems’ inference or reasoning mechanisms are:

� Backward chaining mechanism. This mechanism starts with a statement and
a set of rules leading to the statement and then works backward, matching
the rules with information from a database of facts until the statement can be
either verified or proven wrong.

� Forward chaining mechanism. This mechanism starts with a set rules and a
database of facts and works to a conclusion based on facts that match all the
premises set forth in the rules.

� Case-based reasoning. This reasoning mechanism relies on stored representa-
tions of previously solved problems and their solutions. When a new problem
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(or a new case) is presented, the reasoning mechanism will compare with all
cases stored in the database. In most situations, there is no exact match to the
stored cases. Hence, case-based systems usually need to include an adapting
mechanism to match the new cases.

� Rule-based reasoning. This reasoning mechanism is based on a set of ‘If-then’
rules. These set of rules encode specific knowledge relevant to the domain of
operation.

Note that in knowledge-based systems, the reasoning mechanism uses the informa-
tion collected from specific human knowledge and uses it to reason and solve prob-
lems within the knowledge domain. Knowledge-based systems use representation,
such as rules and relationships between entities. In this discussion, we consider the
knowledge-based system as part of the expert system.

3.5.1 Knowledge engineering

For expert systems and knowledge-based systems to work, knowledge needs to be
stored and represented in a computer readable form. This involves knowledge engi-
neering. Knowledge engineering is the process of eliciting expertise, organizing it
into a computational structure, and building knowledge bases [47]. Hence, knowl-
edge engineering is a technique that is needed to build intelligent systems based on
knowledge representation. In the areas of fusion systems with intelligent process-
ing, ontological engineering2 could potentially emerge as a successor to traditional
knowledge engineering.

3.6 Fusion of Biologically Inspired Algorithms

In this section, we will introduce another aspect of improving the biologically in-
spired algorithms by fusing or working coherently together. This feature will influ-
ence the strength of each algorithm and offset their weakness. For example, NNs
that use gradient-based techniques often have problems in finding global optimum
values in the weight updating process. On the other hand, GAs are particularly effec-
tive at searching large complex spaces efficiently and are able to achieve near-global
optima. Hence, the strength of GAs can be used first to find the right ‘hill’ or ‘valley’
(maximum or minimum problems), while those NNs gradient-based techniques can
then take over to reach the ‘peak’ or the ‘valley’.

Biologically we observed that neuron networks have some form of evolving pro-
cess. While it is not clear how this biologically evolutionary learning process takes
place, combining artificial NNs and GAs provide some form of evolutionary learning

2Ontological engineering is a process that facilitates construction of the knowledge base of a system
[47].
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mechanism. Further, combining of the evolutionary learning mechanism with expert
and fuzzy systems may lead to a blueprint of the way the human brain works.

Some of the fusing areas are:

� Neural networks and genetic algorithms. For example, updating of NN weights
using genetic algorithms.

� Fuzzy logic and neural networks. For example, using the neural network mod-
elling capability to mimic part of the fuzzy logic process.

� Genetic algorithms and fuzzy logic. For example, using genetic algorithms to
alter the membership functions of the fuzzy logic.

� Genetic algorithm, fuzzy logic and neural networks. For example, the fuzzi-
fication, inference and defuzzification processes can be parallelized using the
neural networks structure. Each neuron represents a fuzzy membership func-
tion and each link between the layers represents the weight of a fuzzy rule. The
weights of the fuzzy rules could be optimized by genetic algorithms [120].

3.7 Conclusions

Improvement will continue to make biologically inspired algorithms more attrac-
tive for use in intelligent systems. Fusing of the biologically inspired algorithms
with the traditional algorithms, such as mathematical modelling techniques, statisti-
cal and probabilistic techniques, could be considered to improve the intelligence of
softcomputing.

More biologically related algorithms may be introduced in the near future as we
learn more from the life sciences. One of the increasing research trends is to under-
stand how our brain makes sense of information. Fusion of data and information is
one of the important issues in these areas of research. In Chapter 5 onwards, we will
discuss this in greater details.



CHAPTER 4

Sensing Systems for Intelligent
Processing

Nothing is in the understanding, which is not first in the senses.
John Locke

4.1 Introduction

Sensor research and development is one of the important technologies that would
affect the design and building of intelligent systems. Without sensor/s, the intelli-
gent system will be handicapped, just like a human loosing its sensory system, for
example. The ideal type of sensor should be able to see, hear and feel all targets at
an infinite range and altitude, with perfect resolution and accuracy; should penetrate
all obstacles such as foliage, smoke, building and terrain. Sensors are physically
lightweight, cheap, and can operate 24 hours a day without power constraint and un-
der all weather conditions. Furthermore sensors are stealth, undetectable by target of
interest; that is able to sense but not being sensed by what it intended to sense. How-
ever, the fact is that such perfect sensor does not exist. These desired characteristics
of a sensor are often in conflict. For example:

� Lightweight cheap sensors, in general would have limited processing capabil-
ity and operating endurance.

� Wide and long range coverage sensors, must often trade off against resolution
and accuracy.

New material discovery, processor advancement, and the studying of the life
sciences, such as the human and the animal sensory systems, have all helped to im-
prove sensor technology. For example, chemical sensors based on liquid state and
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solid state materials, have always been used in the estimation of the composition of
natural waters. However, they are only reliable under laboratory conditions. Hence,
a new type of chemical sensor material based on chalcogenide glass have been devel-
oped for this purpose [226]. Sensors produced from such materials are more useful
compared to the conventional types due to a higher sensitivity and potential stability,
better selectivity and lifetime. Another example will be the study of the animal nose
to help improve the design of the odour sensor [203].

Note that in this discussion sensors will also be described as sensor systems; this
is because most modern day sensors not only consist of:

� The hardware, but also the software component to perform tasks, such as sig-
nal processing, to achieve the detection of an object; and in some cases include
identification and tracking software. For example, the radar system does not
just consist of the antenna, but also the signal processing unit to achieve track-
while-scan and beam steering functions.

� One sensor, but could have multiple sensors integrated together for a specific
task. For examples, the acoustic sensor system may consist of a number of
sensors (or microphones) working together for better acoustic signal detection,
and the proximity sensor system may consist of optical sensor and ultrasonic
sensors working together.

The chapter consists of the following sections. Section 2 classifies the types of
sensor systems. Section 3 summaries and discusses both the human sensory systems
and man-made sensor systems. Section 4 discusses the sensor systems design issues.

4.2 Classifying Types of Sensor Systems

Sensor systems can be classified according to the following:

� Frequency range. For examples, acoustic sensors at 30kHz or less, radar oper-
ating at frequencies ranging from 30Mhz to 10GHz [35].

� Medium, such as air, water, solid, space. For example, air defence radars,
underwater sonar sensors, seismic sensors and spaceborne radars.

� Method of measurement. For example, parameters such as pressure, force and
temperature can be detected by sensors.

� Emission/non-emission or passive/active sensor systems. Active sensor sys-
tems radiate their own energy for target detection. Active sensors include mi-
crowave radar, millimeter-wave radar and imaging radars such as the synthetic
array radar (SAR and inverse SAR).
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Passive sensor systems rely on natural or human-made radiation from the
target for detection. Passive sensors cover acoustic sensors, thermal sensors
(electro-optical systems, such as infrared search and track or forward-looking
infrared sensors) and electronic support measure (ESM).

� Methods of intelligence information sources. For example, intelligence in-
formation sources collected from radios are known as communication intel-
ligence (COMINT) and information from human is known as human intelli-
gence (HUMINT). The various intelligence1 sources are classified and shown
in table 4.1.

Classification Source Remark
HUMINT Human Personal observation and reports.
(Human Visual observation by pilots of targets.
Intelligence) Human deduction or inferences from

conversation, etc.
COMINT Communication sources Internal content of messages.
(Communication such as UHF, VHF, HF External characteristics of the
Intelligence) radio transmission such as rate and

number of transmission and interaction
between communication nodes

ELINT Electronic passive Parameters such as pulse width,
(Electronic receivers, such as pulse repetitive interval,
Intelligence) electronic support frequency and

measure (ESM) system scan interval
IMINT Imagery sources Observation and
(Image such as EO (e.g. discrimination of objects
Intelligence) CCD camera and IRST) Example: Two tanks observed

SAR and FOPEN at location X
OSINT Internet, newspaper Key feature of interest
(Open Source TV, radio, etc. collection of information
Intelligence)

Table 4.1: Classification based on intelligence sources

Note: COMINT and ELINT belong to the category of signal intelligence (SIG-
INT) sensors.

4.3 Sensing Technology in Perspective

Table 4.2 shows the human sensory systems which are by nature passive, i.e. they
do not emit signals but receive them. The main sensory systems are: eyes for vision,
ears for hearing, tongue for tasting, nose for smelling and the skin for the sense of
pressure and temperature. Of all the sensory systems, the brain processes a large
percentage of the information coming from the eyes.

1Note that the word intelligence in this paragraph refers to information or news collected by organisa-
tions or agencies. Such information is normally classified data.
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Sense Sense organs Physical interaction Sensed results
sensed

Vision eyes light colors
(electromagnetic
waves) high spectral resolution

Hearing ears sound waves tones

high temporal resolution
Touch,
example of receptors pressure pressure, contact
temperature mainly (direct contact, vibration,
and in the motion, etc.) temperature -
pressure skin hot and cold,
receptors thermal flux varying spatial

resolution throughout
the body - highest
in the finger tips

Smell receptors in chemical various scents
the nasal substances
passages

Taste taste buds on chemical sweet, sour,
the tongue substances bitter and salty

Balance semicircular gravity orientation with regards
canals of the to forces
inner ear

General throughout chemical hunger,
sensations body balances thirst and control

Table 4.2: Human sensory systems

Table 4.3 shows an example of man-made sensor systems. Note that this list is
by no means exhaustive. Man-made sensor systems are both passive and active types.
The passive sensor systems are like the ears, the imagery active sensor systems are
like the eyes and the chemical sensor systems are like the nose to the information
processing unit of an intelligent system.

In the following subsection, we will briefly describe the man-made sensor sys-
tems that are commonly used in civilian and military environments. These are:

� Radar systems;

� Electro-optic systems;

� Acoustic and sonar systems;

� Magnetic sensor systems;

� Chemical sensors;

� Microsensors.
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Sense Sensor systems Physical Sensed results Applications Remarks
interaction

Vision Radar systems: image, range, air-defence
� Imagery radar (SAR, range rate radar, air
and FOPEN). electro- and bearing traffic active
� MTI radar. magnetic range, control,
� Laser radar. waves range rate airborne and
� Doppler radar. and ground
� MMW radar. bearing tracking radar
Electro-optical
sensor systems: light waves images passive
� Quantum detector video camera
� Thermal detector Infrared scanner

Hearing Acoustic and sound waves range and detect air, passive/
sonar sensor bearing surface and active
systems subsurface

objects
Touch Seismic, pressure, range and nuclear passive

temperature and temperature bearing detonation,
pressure sensor and vibration object movement
systems on ground

Smell Chemical and chemical detection of passive
biological sensor substances gas compounds,
systems and elements and

biological agents viruses
Other Magnetic sensor magnetic signal target location altitude control passive
sensory systems of staellites
systems Shear and stress fluid shear/stress fluid dynamic passive

sensor systems sensitivity monitoring

Table 4.3: Man-made sensor systems
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4.3.1 Radar systems

The radar system is one of the most popular sensor used in military and civilian ap-
plications. It was introduced in World War Two and since then the technology has
grown and expanded rapidly. Radar is used in air (all commercial and military air-
crafts are normally installed with a radar), on land (ground radar or radar on ground
vehicles for air surveillance or detecting ground targets) and at sea (both surface
(e.g. ship) and submerged (e.g. submarine)). Radar can detect both static and mov-
ing targets. The probability of detection of a target is often a function of the radar
cross section (RCS) of the target and the signal-to-noise ratio due to the background
noise. There are many different types of radar systems. The following subsections
will briefly describe some of these radar systems.

4.3.1.1 Imagery radar

There are two broad categories of imaging radar namely: the real array and synthetic
array. Both the real and synthetic arrays obtain the x-direction (or range resolu-
tion) by controlling the transmitted pulsewidth. The real array radars obtain the
y-direction (or azimuth resolution) from the antenna beamwidth. Since the antenna
beamwidth is inversely proportional to antenna length, the y-direction of the real
array radars could be improved by using long antennas (narrow beamwidth).

Synthetic aperture

The synthetic array radar is also known as the synthetic aperture radar (SAR). The
development of the SAR was motivated by the desire to use smaller airborne anten-
nas while increasing the y-direction resolution for ground mapping. SAR use the
incremental Doppler shift between adjacent points on the ground, rather than the an-
tenna beamwidth, for the y-direction resolution. The SAR radar provides both fine
and coarse resolution imagery in spot and strip modes.

Foliage penetrating (FOPEN)

The foliage penetrating radar operates on the principle that different radar frequen-
cies passes through foliage with different degrees of easiness. The longer wave-
lengths in the UHF section of the microwave spectrum penetrate the foliage more
easily than the shorter wavelengths, or conversely are reflected less. It is thus possi-
ble to create a true ground surface DEM, hence permitting the mapping of the earth’s
surface which is covered under a forest canopy.
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4.3.1.2 Moving target indicator (MTI) radar

MTI radar is used to detect moving targets. Moving target’s echo pips (or returns)
have a phase shift caused by the motion of the target. This echo pips can be obscured
by the other fixed target echoes. Hence, the moving target indicator (MTI) circuitry
in a radar system can eliminate the fixed target clutter, and show the moving objects.
The returns also enable the computation of the target speed and the target orientation.

4.3.1.3 Doppler radar

Doppler radars can be categorized as:

� Continuous wave (CW) Doppler radar.

� Pulse Doppler radar.

The Doppler radar typically operates at less than 15 GHz. The CW Doppler radar
transmits a constant frequency signal that detects relative motion between targets,
clutter and the radar through the Doppler principle. It is capable of detecting tar-
gets that are masked by ground clutter, and are relatively easy to build and require
minimal transmitted signal bandwidth. The target range-rate is measured using spe-
cialized techniques, e.g frequency modulation of the carrier frequency or multiple
pulse repetition frequencies. However, a disadvantage of the Doppler radar lies in
the frequency stability of the transmitted signal and the subsequent signal-processing
mechanization to maintain the frequency shift achieved between the transmit and re-
ceive frequencies.

4.3.1.4 Millimeter-wave (MMW) radar

The MMW radar has a wide bandwidth which is necessary for fine range resolution
used in target imaging or reduction of clutter. For the detection of targets within
short range (10Km), tactical MMW are produced. Such MMW radars are able to
detect stationary targets. MMW radars are produced at higher frequencies, from 35
to 230 GHz, due to the low atmospheric attenuation at such frequencies. As such,
the angular position resolution of targets can be increased.

4.3.1.5 Laser radar

Laser radars2 use narrow beamwidths. Laser radars are not suitable for searching
capability. However, they are able to detect range fairly accurately and are often
used in conjunction with passive infrared search and tracking (IRST) systems and
thermal imaging systems. In these applications IRST or thermal imagers locate the

2Laser radar is also categorized under the electro-optical sensor system.
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potential targets in large volume and the laser radar system is pointed in the direction
of the target to obtain the range. The laser radar could also be used to confirm the
existence of a target.

4.3.2 Electro-optic systems

Electro-optic systems typically interact with optical fields. They provide still images
and videos. Most of the electro-optic systems are passive devices. These systems
normally consist of the fonts (mirrors, lenses, filters), detectors, scanning circuitry,
signal processing and display. Electro-optical systems can be classified into two
types, namely, the quantum detector and thermal detector [189].

4.3.2.1 Quantum detector

Quantum detectors use semiconducting materials to collect the energy of photons.
As the electrical properties of the semiconductor are changed by the absorbed pho-
tons, an optical signal is detected. Products, such as digital camera, video camera,
which use CCD array as image sensors, belong to this type.

4.3.2.2 Thermal detector

Thermal detectors absorb photons over a relatively broad band of optical wave-
lengths. This absorbed energy causes a rise in the temperature of the detector mate-
rial. The optical signal is detected by the change in temperature.

Infrared Search-Track sensors - IRST

Infrared (IR) sensors are passive sensors which depend on emitted energy, such as
sunlight, to distinguish targets from the background, by the IR radiation they emit.
IRST sensors operate by scanning a single or an array of detectors over a surveillence
volume for infrared point sources intersected by the targets. Target tracks are then
formed as the detections are measured. IR sensors that are mounted on aircraft for
detecting ground targets are also know as forward looking infrared (FLIR).

4.3.3 Acoustic and sonar sensor systems

Acoustic sensors detect, track and classify targets using acoustic signals which are
propagated through water, solids or the air. Examples of such sensors are: sonar
sensors for ships and submarines, microphonic sensors for aircraft and vehicles on
the ground, and seismometers for nuclear detonation and movement of troops. In
particular, the sonar system consists of various stages: detection of the planar wave-
front from a point source using an hydrophones array, beam forming to provide an
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integrated signal for further processing, null steering for the forming of multiple
target-observing beams to track and search for targets, noise cancellation of additive
noise, and removal of noise and detection of targets through spectral analysis.

4.3.4 Magnetic sensor systems

The application of such sensors is very wide and can be classified into two levels.
The first level is the direct determination of the magnetic field itself. The second level
is the indirect method. Each one of these applications can be used as a component
in a system or equipment, such as a process controller in a submarine or satellite
navigation system.

4.3.4.1 Direct measurement of the magnetic field

The purpose of direct measurements is to gather information about the direction and
magnitude of the magnetic vector itself. It includes:

1. Altitude control of satellites, submarines, balloons and aircrafts;

2. Geophysical and geological investigations;

3. Classical and electronic compasses;

4. Prediction of volcanic eruptions and earthquakes;

5. Retrieval of data stored on magnetic tapes or disks;

6. Acceleration systems used in nuclear physics.

4.3.4.2 Indirect measurement

The indirect measurement is further classified into two areas. The first area is in the
measurement of electrical quantities, such as current and power. The second area is
the recording of non-electrical and non-magnetic quantities, whereby the informa-
tion is magnetically encoded and the output sensor signal becomes the carrier of the
original quantities, such as linear and angular position, stress, force and weight. The
application of indirect measurements includes:

1. Contactless keys and DC motors, remote-control values and door locks;

2. Transducers for linear detection, such as proximity keys and position sensors;

3. Traffic detection, such as determination of submarine location and determina-
tion of the spatial positions of ferromagnetic objects.
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4.3.5 Chemical sensors

Chemical sensors are for detection of gas, odor, concentration, pH and ions. They
are devices that convert a chemical state into an electrical signal. A chemical state is
determined by the different concentrations of elements such as atoms or molecules
to be detected. Thus, a chemical sensor gives a signal that in some way is related to
the chemical state it is exposed to.

The NASA Lewis Chemical Species Gas Sensors Team are developing hydro-
gen, hydrocarbon and nitrogen oxide sensors for aeronautics and aerospace appli-
cations [225]. For example, a hydrogen sensor is used to detect the presence of
hydrogen. Presence of hydrogen may potentially indicate that the environments are
explosive or dangerous.

4.3.5.1 Gas sensors

A gas sensor is a chemical sensor operated in the gas phase. The response, x, from a
gas sensor to a single gas can be described as:

x = fgas(Cgas) (4.1)

where fgas is a (usually non-linear) function and Cgas is the concentration of the
gas. The response is in most cases the difference or ratio between the steady-state
value when the sensor is exposed to the test gas and the value from the sensor, such
as derivatives or integrals over certain time intervals. Two important parameters
when describing the response from a sensor are the sensitivity and selectivity. These
parameters are easy to define and interpret for a sensor sensitive mainly to one gas.
The sensitivity, Ygas, for the sensor towards this gas is then defined as:

Ygas =
@x

@Cgas
(4.2)

In general, the sensitivity is a non-linear function of concentration. The selectivity,
E, of a single sensor is usually defined as the ratio of the sensitivity related to the
gas to be monitored and the maximal sensitivity to all other interfering components.

E =
YgasP

allothergases(Y )
(4.3)

One main target of chemical sensor research is to enhance the sensitivity and selec-
tivity of the sensor for a specific compound.

A gas sensor usually consists of two parts: the sensing material and the trans-
ducer. The sensing material interacts with the analyte, e.g. by absorption/desorption
or chemical reactions on the surface and/or in the bulk of the sensor material. The
interaction changes some physical properties of the sensing material, for instance the
mass or the electrical conductivity, which can be detected. The transducer converts
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the chemical information into an electrical signal. A number of possible transducer
principles can be used in chemical sensors, e.g. changes in conductivity as detected
by voltage drop over a series resistor.

4.3.6 Microsensors

Most chemically related sensors are relatively small. A number of temperature and
corrosion detection sensors are also available in miniature size and could be built
on top of silicon chips. An example of micro sensors includes a single photodetec-
tor. Photodetectors, sometimes also known as photosensors, are simple sensors that
detect a single source of energy and produce an output (normally the output is an
electrical signal to indicate the presence of an energy source).

Oak Ridge National Laboratory has developed a micro wireless sensor contain-
ing an IR LED for signal transmission of up to 1 km. The sensor is sufficiently light
and small to be carried on top of a bee [149].

4.4 Sensor System Design Issues

While the eye cannot hear, so is the ear that cannot see. Every designer of sensor
technology would want to achieve a single all-mighty and intelligent sensor system.
But it is difficult, if not impossible to achieve. The physical law of nature always
limits our design of sensor capabilities.

Sensor system design issues include:

� Power management. Management of power is particularly critical for stan-
dalone sensor systems. The ability to design low power consumption technol-
ogy and the ability to turn on the sensor only when it is necessary, will help
power management. The quest to design a better standalone power source is a
continuous research area.

� Physical constraint. The size of the sensor system and the material it needs to
be used will be affected by the kind of physical applications.

� Operational environment. Where the sensor systems will be operated will af-
fect their physical design. There are always great differences in design speci-
fication for a sensor system built for indoor compared with one for outdoor.

� Specification. This affects the resolution, accuracy and coverage of the sensor
systems during design phase.

� Cost constraint. The uses of sensors are frequently affected by cost. Cost will
drive the market on how a sensor will be used.
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� Integration with other sensors. Integration of sensors will be an increasingly
important design issue. This will be further discussed in the next subsection.

4.4.1 Multiple sensor integration

Every sensor system has a specific ability to detect, identify and track specific ob-
ject/s in a certain environment. The integration of every sensor or sensor systems,
by harnessing and controlling their individual strengths and capabilities, could lead
to the development of very powerful and/or intelligent sensor systems. Such an inte-
gration process would involve multiple sensor data fusion technology. This will be
discussed in part 2 of this book.

4.4.2 Sensing platforms

Sensors can be placed on different platforms that could be mobile, static and di-
versified structures. Here, we will consider sensors located on a single or multiple
platforms.

� Single platform with multiple sensing devices. The major reasons to employ
multiple sensors on a single platform are that the various sensors provide
different, often synergistic, information; search different locations in space;
provide redundancy in a target-rich environment and/or under high reliability
requirements; and provide increasingly accurate information (e.g., warning,
general location, specific location) [43]. A typical example of such system is a
fighter plane that carries radar systems and infrared search-and-track sensors.

An example of a single platform with multiple sensing devices is the head of
an animal, where the various sensors (eyes, nose, ears) are positioned in such
a way that a movement of the head will effect one of the sensors, but will
also help the other sensors to provide a more comprehensive picture of the
surrounding environment.

� Multiple platforms with multiple sensing devices. In most modern military
systems, several different platforms are usually involved to aid the data fusion
process to produce a more conclusive situational picture. This type of system
may also be thought of as a combination of several single platforms that are
similar if not the same. Example, the DARPA’s Unmanned Ground Vehicle
program, see [61], with a unit of autonomous vehicles equipped with cameras.
A major problem associated with such multiple platforms, as pointed out in
[43], is the transformation of sensor estimates from the coordinate system of
one platform to that of another. If the transformation is sufficiently inaccu-
rate, targets common to both sensors cannot be recognized (i.e. associated)
and false targets are generated. Hence accurate coordinate transformation is
important. This is part of the data fusion process. The data and information
fusion will be discussed in Chapter 5.
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CHAPTER 5

Fusion Systems for Intelligent
Processing

Data fusion is deceptively simple in concept but enormously complex in
implementation.

US Department of Defense, 1990.

5.1 Data and Information Fusion System - What and
Why

Fusion involves the combination of data and information from more than one source.
Data and information fusion is becoming an important field of study due to an in-
crease in data and information flow, and the continuous improvement in communi-
cation, computing and sensor technology. This increase is shown in the following
areas:

� research and publication of data fusion work.

� military and civilian interest in integrated/networked systems that need data
and information fusion, such as network centric warfare and e-commerce.

Fusion systems are applied to the medical field, earth resources monitoring, weather
forecasting, vehicular traffic control, robotic navigation, financial analysis, and mili-
tary command and control (C2) systems. The sources of data could be from sensors
or textual1 reports. Textual data are sometime known as information, whereas the
sensor observations are data. Hence, the term sensor fusion or information fusion is
used interchangeably, depending on the data sources. In this book, the general term

1Textual refers to data with assigned attributes that is represented in text form.
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data and information fusion are used. Figure 5.1 illustrates the difference between
data, information and knowledge. Knowledge is the ability to use information. It
involves understanding the information and is derived from the information process.
Knowledge is situation dependent and requires intelligent process of information.
Information and knowledge are an integral part of cognition 2. The ability to fuse
data and information for meaningful use as a form of knowledge in machine is an
essential fusion process.

Logic

 and intelligence

Storage and organization
of information

Dynamic
situation

Assigned attributes
with limited logical 

Intelligent process

relationship between data

Limited prefined 
attributes

update

Knowledge

Logic

Data

Information

Figure 5.1: Data, information and knowledge.

Why data and information fusion systems? Fused data/information are much
more enriched in information than data from a single source, else the data/information
would not be fused. Hence, fusing data from multiple sources is an intelligent pro-
cess. This intelligent fusion process is well illustrated in how our brain fuses data
from our body’s sensory systems such as eye, ear, nose, tongue and skin. Our body’s
sensory systems provide sense data from our environment via the nervous system to
the brain. The brain fuses this information to achieve the awareness of our surround-
ing environment and attempts to derive knowledge, draw conclusions or inferences
from the fused information. Figure 5.2 shows an analog view of an intelligent fusion
system as that of a brain using multiple sensory information sources.

Other reasons on why we need data and information fusion systems are:

� Robust System. A system that depends on a single source of input is not robust
in the sense that if the single source fails to function properly, the whole system
in operation will be affected. However, the system fusing several data sources
is more robust while in operation or has a higher fault-tolerance rate since

2Cognition is defined as the process of knowing, perceiving and conceiving. Cognition involves the
intellect and the mental process in obtaining and processing of knowledge and information.
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Figure 5.2: Intelligent fusion process.

other sensors in working order are able to provide similar, if not better data for
processing.

� Better situation awareness and inference, hence faster reaction time. By taking
advantage of different sources or sensors’ accuracy, the combined and fused
results would give a better picture of the situation and hence improve infer-
ence, which in turn, would lead to better decision making. This is particularly
true in military scenarios where increases in the accuracy of weapons and tar-
gets mobility require quicker responsive detection and countermeasure reac-
tions. More sensors are able to provide additional information on the target
and hence better tracking and faster reaction time for countermeasures.

� Improve data accuracy and reduce data uncertainty and ambiguity. Multiple
independent sources of data collectors can help improve data accuracy and
reduce uncertainty after intelligently fusing and removing the ambiguity of
the data.

� Extended coverage. More data sources will provide extended coverage of in-
formation on an observed object or event. Extended coverage can be applied
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to both spatial and temporal environments.

� Cost effectiveness. With the reduced cost of computing, communication and
network resources, it is, in general, more cost effective to depend on multi-
ple sources of data input, than relying on a single source to provide all the
necessary information. For example, to build a single sensor that can perform
multiple functions is much more expensive than to integrate several simple and
cheap sensors with specific functions. This is also related to the next point on
no single perfect source.

� No single perfect source. Most sources of data collector, such as sensors, are
only useful in certain environments. Information gathered by a single source
can be very limited and may not be fully reliable and complete. For examples,
contact sensors can only detect an object on contact, acoustic sensors can only
detect objects that emit acoustic signals, vision sensors are critically dependent
on the ambient lighting conditions and electronic surveillance sensor can only
detect objects that emit electro-magnetic waves. Hence, it is difficult for one
source to meet all the needs.

This chapter is arranged as follows: Section 2 will discuss the multiple levels
of data and information fusion process. Section 3 will present the issues in fusing
data. Section 4 will discuss the cognitive intelligence for intelligent fusion systems.
Section 5 will present the fusion system architecture. Section 6 will briefly discuss
the possible techniques and algorithms for fusing data and information. Section 7
will discuss the complementary and competitive data. We conclude with section 8.

5.2 What are the Different Levels of Fusion Process?

The Joint Directors of Laboratories (JDL) Data Fusion Subpanel of the US Depart-
ment of Defense (DOD), defined data fusion as a multilevel, multifaceted process
dealing with the association, correlation, estimation, and combination of data and
information from multiple sources to achieve refined entity position and identity es-
timates, and complete and timely assessments of resulting situations and threats and
their significance [121]. This section expands on this definition. The multilevel data
fusion process could be broadly divided into 5 levels. We categorized these 5 lev-
els into the two stages of processes, namely low-level fusion process and high-level
fusion process, as shown in Figure 5.3.

� Low-level fusion process.

– Level 0 - Source pre-processing. This is the lowest level of the data fu-
sion process. The kinds of fusion work include signal processing fusion
(fusion at signal level after a signal conditioning process) and imagery
fusion at pixel level (also known as pixel level fusion). Hence, most of
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Figure 5.3: 5 levels fusion process.

these sources involve individual sensor’s multiple detection inputs to the
signal-processing engine. If the sources are textual, such as from press
or Internet, this stage also includes information extraction. This level of
fusion also looks at reducing the quantity of data and retaining useful
information for the higher-level fusion processes.

– Level 1 - Object assessment. This level of fusion uses the processed data
obtained at level 0. The common processing needed at this stage are data
and time alignment, association and correlation, grouping or clustering
techniques, state estimation and state vector fusion, deghosting of false
target (for passive sensors), identity fusion and combining of feature ex-
tracted from images (also known as feature-level fusion). The end results
of this fusion process are object discrimination (object classification and
identification) and object tracking (object state and orientation).

� High-level fusion process. High-level fusion normally starts at the point where
the objects are known i.e. the type, location and movement (orientation and
history points), and quantity of these objects. Decision-level fusion, com-
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monly discussed in the fusion community, could be said as belonging to the
high-level fusion process. In most cases, fusion at levels 2, 3, 4 will ultimately
contribute to decision making.

– Level 2 - Situation assessment. Level 2 processing seeks for a higher
level of inference above level 1 processing. According to the JDL (US,
DOD), situation assessment identifies the probable situation using the
observed data and events. Basically, it establishes a relationship among
objects. Relationships (such as proximity, temporal and communica-
tion from content and non-content sources) are assessed to determine
the meaning of entities or objects in a specific environment (such as ter-
rain, surrounding media, weather, vegetation and area of interest). The
goal at this level includes: deriving higher-order inference and identify-
ing meaningful events and activities (or pattern, in general). An example
of higher-order inference for classification of organization structure is
the clustering of platoons to infer a company. And examples of activities
are coastal surveillance operations, military training exercises, defensive
operation and illegal animal hunting. An example of an event is an air-
craft crossing the border between two countries. Hence the output of
situation assessment is a collection of higher-order inferences in chrono-
logical order, which provides a view of what is happening in the world.

– Level 3 - Impact assessment. This level is classified as impact assess-
ment. Note that the revised JDL model (1998) has also used impact
assessment in place of the threat assessment. As the name implies, this
level is to assess the impact of the activities and events derived at level 2
to own perspectives or in military strategic planning perspectives. This
includes:

� Assessing the level of threat or danger. For example:

� The activity of coastal surveillance operations - is this a high
threat due to our important assets near the surveillance area, or

� Assessing the capabilities of the adversary’s forces with respect
to own forces’ strength. What are the adversary’s defensive and
offensive capabilities?

� Predicting the possible outcome. For example, predicting the possi-
ble adversary’s intentions and predicting the impact of illegal animal
hunting on the region’s ecology. If unable to predict the intentions,
what are the different possibilities?

� Assessing the vulnerabilities of our assets. What are the risks to own
assets and forces?

� Possible own forces’ cause of actions. What are the actions to take
to ensure own survivability or minimise the risk?

– Level 4 - Refinement of fusion process. The last fusion process is the
refinement process. The refinement process is to improve the data fusion
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from level 0 to level 3. This level is performing resource management,
in particular, of the sensor resources (as the sensor is the main focus,
this level is also known as sensor management). The common aim is to
achieve an effective resource management by performing: task priority,
cueing, scheduling, allocation and control of resources. These will form
part of the sensor management process that serves as a feedback loop for
the complete sensor fusion process.

Figure 5.4 shows the idealized flow of the 5 levels data fusion process.
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Figure 5.4: Possible logical flow of the 5 levels fusion process.
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5.2.1 Fusion complexity

The complete JDL data fusion model encompassed the complex integral of multiple
sensory systems and the interpretation of the complete chain of data and information
for situation and impact awareness. At the low-level fusion process, it is an immedi-
ate or short-term demand for situation awareness. At the high-level fusion process,
it is toward the projection or long-term demand for situation and impact awareness.
The refinement process will then assist to manage the multiple sensory systems (or
sources) to meet the short-term and long-term demand.

The complete fusion process is a complex task. The low-level fusion will need
to address the complexity of association, short-term history process and structural
issues. While high-level fusion needs to handle the intelligent integration of current
information with long-term memory information and information recall issues.

In military perspective, how close are data and information fusion processes in
fulfilling the principle found in Sun Tzu’s Art of War [235], is for one to find out. A
partial quote from Sun Tzu’s works regarding this principle is as follows:

He who has a thorough knowledge of himself and the enemy is bound to win in all battles. He
who knows himself but not the enemy has only an even chance of winning. He who knows not

himself and the enemy is bound to perish in all battles.

Know your enemy, know yourself, and your victory will not be threatened. Know the terrain,
know the weather, and your victory will be complete. [235]

5.3 Issues on Fusing Multiple Sources

Data and information fusion are a multi-disciplinary subject. Data could come from
diverse sources where information of the data could be ambiguous, noisy and the
quantity could be substantial. Hence, it is not a trivial matter to solve data and
information fusion problems.

Listed below are some of the common issues one will face in fusing multiple
sources of data:

� Data dimensionality and alignment. Different sensors have different measure-
ment data and hence different dimensionalities and features. Data alignment
and transformation would be needed to achieve common format and standards.
Note that the registration process is considered as part of data alignment. For
example, different sensor systems may have different:

– Coordinate systems such as Cartesian, spherical and polar coordinates,
latitude-longitude-altitude (or LGZ), North-East-Down (or North-East-
Up) and Military Grid Reference System (MGRS) representation.

– Measurement units such as mile, meter, feet and inch.
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– Size of data (object state observable) such as different dimensional space.

– Features such as frequency, amplitude, imagery and non imagery.

– Data resolution and accuracy.

– Common reference. Sensors in same or different platforms need to be
aligned into a common spatial reference.

Hence techniques are required to perform data transformation and normaliza-
tion to a common format and standard that are appropriate for data fusion
processes.

Data alignment is required to transform observed data from many different
sources to a common format. Data alignment is part of the registration process.

� Data incest and reliability. Distributed and decentralized data fusion need to
handle the problem of data incest and reliability issues. Figure 5.5 illustrates
the problem of data incest. Ideally each fused data should contain information
on whom is contributing it (this is related to indicating the data dependency
and independency factors) and its source’s reliability. However, tagging such
information across many nodes is a complicated task and may not be easy to
implement in practice.

� Time alignments. The synchronization of the data time is important. This
is because only data that are ‘close’ in time can be integrated, if meaningful
results are desired. This is particularly important for competitive data. The
closeness of time or the window period where the data can be fused depends
on the types of fusion system. Time-critical fusion systems such as fusion
system on-board air platform, the time window is typically in micro or mini
second; whereas fusion systems for non-real time analysis that depend on re-
port sources that may take minutes or hours to arrive, the time window of
closeness could be in the order of minutes or hours.

However, for complementary data, the closeness of time may be relaxed. This
is because complementary data may still provide useful information to the
fusion system even if the data sources are not sufficiently close in time. For
more discussion on competitive and complementary data, please see section
5.6.

Time alignments are complicated by:

– Sensors located at geographically different areas and at different plat-
forms.

– Time difference of arrival due to different signal propagation speeds e.g.
acoustic signal vs electromagnetic signal vs seismic signal.

– Data source update rate.

– Sampling rate. Sampling rate of the sensor measurement data for most
integration algorithms need to be the same.



88

Node 2Node 1

Node 1

Node 2 Node 3

Node 3

No target detected but if Node 1
detects a target, then there
probably is a target.

Probably a target
over there.

detects a target, then there
probably is a target.

No target detected but if Node 2

Probably a target
over there.

Node 3 detects a target

Target detected (50% confidence)

must be a target. (90% confidence)
as well. Therefore, there

Figure 5.5: Example of data incest. Node 1 communicates its detection to
node 2. Node 2 passes the message to node 3. Node 3 broadcasts
the message and node 1 receives. Node 1 assumes that node 3
has the same detection and hence increases its confidence of the
detected target.

Time stamping and a common clock for synchronization will have to be es-
tablished. Techniques are required to resolve the time delay due to signal
propagation and sensor detection. Alignment to ensure common time frame
may be needed.

� Sensor operation platforms.

– Single or multiple platforms. Sensors in a single or multiple platform
have their own unique time synchronization problems.

– Static or moving platforms. Sensors are in moving or stationary plat-
forms. It is certainly not a trivial problem when the sensors are in differ-
ent moving platforms e.g. it may not be feasible to achieve any meaning-
ful results having acoustic sensor on a continuous fast moving platform.
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Speed of the moving platform is a factor that needs to be considered.

� Quantities of sensors used. The increase in the number of sensors available
may result in an exponential increase of:

– Fusion engine design complexity.

– Data storage structural complexity.

– Communication costs [109].

It is common belief that with more sensors, hence more data, is never theoreti-
cally bad for decision making. However, as pointed out by Treece [221], more
data or information is damaging to the final answer under certain conditions.
Some of these conditions are related to data reliability and the environment
the sources are operating on. More studies and investigations are needed to
identify the conditions that could be damaging for adding more data.

� Sensor selection strategies. Luo and Kay [146] pointed out that the sensor
selection is one of the integration functions that can enable a multi-sensor
system to select the most appropriate configuration of sensors from among
the sensors available. Therefore, proper sensor selection strategies need to be
studied. Factors affecting the sensor selection include:

– Target dynamics.

– Target densities (e.g. closely-spaced targets).

– Background noise sources (e.g. high clutter background due to multipath
reflection).

– Sensor performance (e.g. probability of detection).

� Concepts of operation. The high-level fusion process would need to take
into consideration the concepts of operation, particularly in a military con-
text. With increasing complexity of the battlefield, meaningful integration and
fusion can only be established if the operational doctrine is well understood
and the goals are clear.

� Organizational structure and workflow. In order to provide meaningful fu-
sion results, some understanding of the organizational structure and workflow
would be useful. Different groups of people in the organization look for dif-
ferent information, hence fusion system would need to fuse the correct set of
data and information that the people are looking for.

� Physical and operational constraints. The choice of fusion architecture and
techniques are sometime affected by the physical and operational constraints.

The solutions to the above issues are non-trivial. The degrees of difficulty also
depend on the level of the fusion process and fusion architecture used. To derive
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higher intelligence inference, such as the human brain intelligence, the cognitive
intelligence process will need to be studied. The next section will cover a brief de-
scription of the cognitive intelligence. And since the fusion architecture will also
affect the fusion system design (system engineering design perspective) and the fu-
sion algorithms (in term of efficiency and effectiveness), the section after cognitive
intelligence will discuss the fusion architecture.

5.4 Cognitive Intelligence

The fusion issue at high level involves understanding of information to perceive and
conceive for situation and impact assessment and ultimately awareness. Today, there
is no known machine that could do that as well as the human brain can. Hence to en-
gineer this fusion process, the understanding of how our brain processes information
and knowledge will be important - specifically the aspect of intelligence pertaining
to cognitive processes, i.e. perception, learning, information retrieval from memory
and inference, more commonly known as cognitive intelligence. The study of cog-
nitive intelligence includes: understanding the complex human brain in coping with
life situations, such as its ability to adapt to new conditions, learn new things, recall
information and apply knowledge to solve problems.

5.4.1 How to make sense of information?

What is the cognitive process that enables one to decide which pieces of information
are more relevant than others? And how to obtain meaning from data that is other-
wise difficult to draw any useful conclusions from? How to recall information at the
right time for a useful process? How to understand what others think?

The attempt to engineer the cognitive process has led to cognitive psychology 3,
knowledge engineering, ontological engineering, memory engineering, computa-
tional intelligence (e.g. biologically-inspired algorithms), human factor study and
many more. More recently, the term cognitive informatics was coined for the study
of natural intelligence. Cognitive informatics study the internal information pro-
cessing mechanisms and natural intelligence of the brain [229] and has originated
from information theory and contemporary informatics 4. Cognitive informatics look
into how human beings acquire, process, interpret, and express information by us-
ing the brain and how we understand the mind of different individuals. This new
interest has led to the First IEEE International Conference on Cognitive Infomatics
(ICCI’02) held in 2002.

3Cognitive psychology includes studies of perception, memory concept formation and problem solv-
ing.

4Informatics refers to the science of information. It involves the studies of the nature of information,
it’s processes, and ways of transformation between information, matter and energy.
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The other aspect of the cognitive process is in attempting to make sense of infor-
mation or also known as sensemaking. In the general sense, the word ‘sensemaking’
refers to the derivation of an understanding of a problem given a large set of data
that is complex and sometimes even self-conflicting. Sensemaking is a complicated
process and is described as a cognitive task model [53, 184]. As such, it is subjective
and is dependent on many factors, such as the point-of-view of the people performing
it and diversity of the group. Sensemaking is used in situations where information
is often vague and ambiguous. For more information on sensemaking, reader may
refer to the publication by Leedom [136, 137].

The transformation from information to knowledge is situation dependent [54]
and involves smart algorithms. Figure 5.6 shows a possible engineering flow of an
attempt to model cognition and high-level fusion to achieve situation and impact
awareness.
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Intelligent process

(Situation & Impact)
Awareness state

Decision making

Long-term memory

Short-term memory

InformationData
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management
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Work flow

Organization structure

Culture

Figure 5.6: Possible engineering flow of cognitive and high-level fusion pro-
cess.
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The awareness state is continuously updated within the closed-loop process of
memory and the intelligent algorithms. The memory engineering process will need
to handle the storage and organization of useful information and with the ability to
recall or retrieve information to enhance the awareness state. Memory engineering
process and intelligent process work hand-in-hand to derive knowledge and update
the awareness state. The awareness state will continue to evolve from a perceive
state to a comprehension state and finally to a projection state (see Figure 5.7). The
awareness state will be updated with more data and information input.

Perceive state Comprehension
state

Projection
state

Awareness stateData & information

Figure 5.7: Possible evolving process of the awareness state.

The intelligent process will involve decision support tools such as the biologi-
cally inspired algorithms (or the descriptive techniques), information-theoretic ap-
proach, statistical and probabilistic techniques, mathematical modelling and cogni-
tive informatics approaches. The iteration between the intelligent process, awareness
state, memory engineering process and the resource management form the high-level
fusion process.

Sensemaking will encompass the awareness state, the interface design and un-
derstanding of the way human make decision. The interface design include how
information can be best presented so that a human can interpret it correctly and com-
fortably. Hence, the interface design will consider human factors such as stress,
workload, expectation, cognition, expertise, personality and culture.

5.4.2 Memory structure for cognitive intelligence processing

Memory is an important component in the study of cognitive intelligence. Memory is
the foundation for maintaining a stable state of an animate system. It is also the foun-
dation of any natural intelligence [230]. The cognitive memory map plays a role in
understanding how the brain processes information.The human brain typically can be
mapped into the following 4 memory types namely; the sensory memory, short-term
memory, long-term memory and action buffer memory [230]. Figure 5.8 shows the
memory structure. Cognitive engineering views the learning as a process in which
information is obtained, stored in the long-term memory and able to successfully
recall it when needed [94].
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Figure 5.8: The memory structure.

5.5 Fusion System Architecture

There are several ways of classifying data and information fusion system architec-
ture. From literature survey and studies, we could classify them into the following 4
types of fusion architecture, namely:

� Centralized fusion architecture.

� Decentralized fusion architecture.

� Distributed fusion architecture.

� Hierarchical and hybrid fusion architecture.

5.5.1 Centralized fusion architecture

In a centralized fusion architecture, the fusion unit is located at a central processor
that collects all information from the different sources (Figure 5.9). All decisions are
made at the central processor.
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Figure 5.9: Centralized architecture with a central processor.

5.5.2 Decentralized fusion architecture

A decentralized fusion architecture consists of a network of nodes, where each node
has its own processing facility. There is no need for a central fusion or central com-
munication facility, as a common place does not exist where fusion or global deci-
sions are made as fusion occurs at each node, on the basis of local information and
information from neighbouring nodes [74].

Three characteristics of a decentralized fusion architecture are:

1. No single central fusion centre.

2. No common communication facility.

3. Nodes have no global knowledge of the network topology.

Decentralized fusion architecture could be further categorized as fully connected
decentralized fusion architecture or partially connected decentralized fusion archi-
tecture. Figure 5.10 shows a fully connected decentralized fusion architecture.

5.5.3 Distributed fusion architecture

Distributed fusion architecture is shown in Figure 5.11. Distributed fusion architec-
ture is where each sensor’s measurements are processed independently (e.g. perform
data association and state estimation) before sending the object (e.g tracks) to a cen-
tral processor for further fusion with other distributed sources input. Distributed
fusion architecture could be viewed as an extension of the centralized fusion archi-
tecture.

5.5.4 Hierarchical fusion and hybrid fusion architecture

The other possible architectures in the literature are a combination of centralized,
distributed and decentralized architectures. Here, we classify two types of mixed
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Figure 5.10: Decentralized fusion architecture.

architectures, namely hierarchical fusion architecture (see Figure 5.12) and hybrid
fusion architecture (see Figure 5.13).

5.5.5 Is there a difference between decentralized and distributed
fusion?

Although the terms decentralized and distributed fusions are used interchangeably in
most of the literature, there is a slight difference between the two terms.

In a decentralized case, the various decision makers (or estimators or controllers)
do not all share the same information at a given time and there are no central facil-
ities. In a distributed case, there still exists the notion of central processing. Dis-
tributed networks reduce computation and communication by dispersing the work
among a number of hierarchical processors which ‘report’ to a central processor
[23].

The difference between decentralized and distributed fusion architecture is shown
in Figures 5.10 and 5.11 respectively. However, one common similarity is that both
the distributed and decentralized fusion are able to work in a multiple sensors envi-
ronment.
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Figure 5.11: Distributed fusion architecture.

5.5.6 Is there a single best architecture?

The answer to the above question is an obvious NO. This is because architecture
selection is a function of need, demand, existing connection, data exploitation level,
data availability, strategic planning scheme, and the organisational structure using
the fusion system.

However, centralized architecture is, in general, better discussed, implemented
and used than decentralized architecture. Most of the existing fusion systems, in one
way or another adopt centralized architecture. Decentralized architecture is difficult
to implement partly due to communication and computing constraints, cost, spatial
and temporal issues. Robust decentralized algorithms that could solve these issues
are currently being investigated. For example, using an information filter (IF), rather
than decentralized Kalman filter (KF), in a decentralized architecture’s state estima-
tion process. This is because the information filter is computationally less complex
and claims to occupy less bandwidth than the Kalman filter. This will help reduce
the computational load and communication costs.

As systems become more interconnected, mixed architectures will prove increas-
ingly more popular. For example, building a fusion system where the current sensor
systems have already performed fusion at level 1 process.

Most of the stand-alone platforms (e.g. car, aircraft, ship, tank and single lift
systems) will remain working in a centralized architecture. We refer to a stand-alone
platform as a system with only one central processor. Transforming multiple stand-
alone platforms to decentralized fusion architecture will depend very much on how
the constraints (as stated earlier) could be resolved.
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Figure 5.12: Hierarchical architecture.

5.6 Techniques for Data and Information Fusion

Data and Information fusion techniques are drawn from many disciplines. Figure
5.14 shows that the building of data and information fusion systems often involves
multi-discipline subjects and techniques. These multiple techniques are often applied
jointly or sequentially [92].

5.6.1 Level 1 - Object assessment

At the level 1 fusion process (object assessment), the analysis is more at individual
object. Each object is studied and characterized with regard to its class, position and
orientation. The techniques required include data association, state estimation and
classification.

5.6.1.1 Data association and correlation

Data association is the problem of attempting to determine the set of data that re-
ferred to the same entity (where entity could be the desired object or event). Is there
a difference between association and correlation? Hall [92] defined data association
and correlation as follows:

� Association - The process of assigning and computing weight that relate obser-
vations or tracks from one set of data to observations or tracks to another set
of data. For example, frame to frame association, observation to observation
association, observation to track association, and track to track association.
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� Correlation - The structural, functional or qualitative correspondence between
comparable entities; a decision making process which employs an association
metric as a basis for allocating or assigning sensor measurement and/or report
to the hypothesis entities of interest.

Another definition of the term correlation is: Correlation is a bivariate mea-
sure of association (strength) of the relationship between two variables.

In simple terms, association involves an action of finding the joint relationship among
a set of data. The findings of this relationship could be used for clustering purposes
or identifying data or information that are referring to the same object or subject
matter. On the other hand, correlation involves understanding the shared relation-
ship, or connection of cause and effect between two data or two set of data. Hence,
correlation is naturally part of the association process.
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Figure 5.15 shows the possible algorithms for performing data association. In
Chapter 6, we will further discuss the issues and some of the techniques used for
data association.

5.6.1.2 State estimation

State estimation is the problem of attempting to determine the value of an object’s
state, given the observations or measurements of the object (commonly the term
system is used rather than object for state estimation). Figure 5.16 shows the various
filters that could be used for state estimation. It is noted that for state estimation, the
IMM (Interactive multiple models) algorithm is well accepted as the best method. In
Chapter 7, we will further discuss the tracking algorithms.
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Figure 5.15: Data association techniques.

5.6.1.3 Classification, identification and identity

Classification is the problem of attempting to determine the class of objects or gen-
eral platform types. For example, car, ship, tank, and aircraft are general platform
classification. Identification is the next level of classification or the platform specific
types. For example, under the class of car, we could have Toyota car, Honda car and
Mazda car. The identification of specific platform types may also include identity.
The identity of object or target, in military context, refers to friend, hostile, neutral or
unknown. The techniques that have been considered and could potentially be used
are shown in Figure 5.17. Note that Figure 5.17 is partially adopted from [122].
The probabilistic classifier, namely the Bayesian and Dempster-Shafer classifiers are
described in the appendix.

5.6.2 Level 2 and 3 - Situation and impact assessment

At the level 2 fusion process (situation assessment), the techniques commonly in-
volve building the relationship between objects and clustering of objects 5. The ob-
jective is to derive higher-level inference, such as activities and events.

Level 3 involves an impact assessment, which includes determining the threat
level, estimating the opposing force capabilities, predicting the intent at certain spe-
cific times (possible course of action) and estimate the impact on its own forces.

5This includes activities/events aggregation
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Figure 5.16: Filters that are used for state estimation methods.

5.6.2.1 Clustering and aggregation

Clustering and aggregation algorithms are needed to group or aggregate related ob-
jects and activities together to obtain part of higher-order inference process. For ex-
ample, in a military organization a group of infantry platoons will form a company
and a combination of infantry, logistics and support companies will form a battalion.
Figure 5.18 shows a framework for force aggregation commonly applied to military
purposes. Clustering and aggregation algorithms normally depend on factors such
as:

� time relationship;

� geometrical proximity;

� equipment types;

� quantities (or in military the unit size);

� communication means;

� environment (terrain, weather and foliage);

� doctrine and governing roles;
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� social and cultural behaviour and

� other functional dependence factors.

5.6.2.2 Learning, reasoning and knowledge embedding and retrieval strate-
gies

Various learning, reasoning and knowledge embedding and retrieval strategies will
be needed for level 2 and 3 assessments. These include:

� Probabilistic networks. Probabilistic networks, such as Bayesian networks are
seen as having a high potential in capturing the complex relationship between
various objects, activities and events. This is essential for pattern recogni-
tion and trend recognition6. Other statistical decision, evidence combination
and hypothesis generation methods may also be used to map the network of
features and functional dependency between objects or activities.

� Decision trees and graph-based inference. Decision trees and graph-based in-
ference approaches are used to map complex and dynamic environments. De-
cision trees and graph-based inference have similar characteristics as a proba-
bilistic network. They extract statistically-based information or decision rules
unsupervized from a given set of data. An example of decision tree approach is

6Trend recognition will be essential for projection and prediction of possible outcomes.
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Figure 5.18: An example of force aggregation.

the fuzzy decision tree and an example of graph-based approach is goal lattice
techniques.

� Computational intelligence. Computational intelligence techniques, such as
fuzzy logic, neural networks and genetic algorithm, will be combined to de-
rive higher-order inference for intelligent systems to assess the situation and
impact. These include enhancing existing knowledge-based and case-based
systems with real-time updating and adaptive correction of the system knowl-
edge.

� Cognitive intelligence. The understanding of the human brain and how it
works may lead to better engineering of the natural intelligence-thinking ma-
chine. Classical information theory will remain useful in engineering cognitive
intelligence for fusion processes. Others include: the study of the natural flow
process of how a brain will react such as:

1. When there is lack of information, the natural response is to seek more
information.

2. When this is impossible (as for example, when the staff tries to under-
stand the enemy commander’s intent), the most common tactic is to rea-
son based on assumptions.

3. When neither of these work, the most common response is to find ways
of coping with possible adverse outcomes.

(Naturalistic decision making process - courtesy of Professor Martin G.
Helander, Nanyang Technological University)
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The quest to understand this natural flow of decision making is known as nat-
uralistic decision making.

The techniques used for the level 4 refinement process will be covered in Chapter
9.

...unless I can read your mind I won’t know what’s going to happen on Wall Street
except probabilistically.

Sloan’s Jesse Ausubel (The Wall Street Journal Europe, May 2003)

5.6.3 Remark on blending and fusing

Fusing is a stronger term than blending when used in combining data. Blending
generally means mixing two or more sources together. An example: blend flour and
sugar. In data and information fusion, blending could simply mean combining dif-
ferent data sources by weighting these sources of data. However, fusing could mean
more than just blending. Fusion involves tighter joining of two or more sources. Ex-
amples include melting of two or more metals to form a new metal. However, in this
book, we do not seek to differentiate the use of blending and fusing of data. We see
both words as contributing towards the combining of data.

5.7 Complementary and Competitive Data

Data from multiple sources observing the same object or event generally can con-
tribute to either complementary or competitive information. Data sources are said to
provide complementary or competitive information when the observed data fulfil the
following criteria:

� Independent data source. The data are collected by independent sources.

� Same object or common event/space. The data collected by the sources are
observing the same object or common event.

To qualify that the data collected by the sources are observing the same object or
common event, data association is required. In that perspective, sensor systems are
either strategically placed to spot certain common areas (minimum or no association
process needed) or there are some common features that the sensor systems could
use to associate and confirm that they are looking at the same object or event. For
example two sensor systems may use the closeness of the geolocation to determine
the object being associated. More discussion of the data association will be presented
in Chapter 6.
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5.7.1 Complementary data

Complementary data will lead to a wider awareness of the situation and a more com-
prehensive picture. Complementary data supplement one another to make the part
more than the whole. What one sensor lacks will be provided by another sensor -
when considering fusion in complementary data. Hence, complementary data will
lead to an increase in information space.

Examples of complementary data are:

� Two video cameras positioned at different angles. The two cameras provide
complementary information as each camera sees a different perspective of the
same object due to the angle each camera is viewing. With the two set of
information put together, it may be possible to construct the 3-D picture of the
object.

� Laser radar and the forward looking infrared (FLIR). The laser radar can pro-
vide the range information and the infrared image can show special features
of the same object.

� Low-resolution vision camera and ultrasonic range finder. The low-resolution
vision camera locates the direction, such as the direction of an obstacle. The
ultrasonic range finder will determine the obstacle’s depth and shape.

5.7.2 Competitive data

Competitive data will help to enhance the reliability, accuracy and fault tolerance of
systems by presenting independent measurements of the same object feature or event.
For example, two acoustic sensor systems measuring independently the same object
emitting an acoustic frequency. Using these two sources of competitive data, fusion
techniques will attempt to reduce the overall uncertainty and increase the accuracy
of the data.

5.8 Summary

This chapter has presented the motivation for data and information fusion. It high-
lighted the various issues and techniques for fusing data and information. Data and
information fusion with regards to cognitive intelligence and architectures were dis-
cussed. Given the above explanations and discussions, it is hoped that fusion systems
will increasingly play an important role in both civilian and military systems.

There are many possible research areas in building intelligent data and informa-
tion fusion systems. Listed below are some possible areas:
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� Theory. Proving of particular fusion techniques will lead to optimal results,
such as proving that the various state vector fusion techniques or covariance
intersection methods are optimal in performance.

� Systems. Systems can be divided into two categories, i.e. those with multiple
subsystems or single system with one central processor.

– A system with multiple subsystems where each subsystem has its own
processor. These include large-scale and small-scale systems. Examples
of large-scale systems are space stations (e.g. the Russian Mir station),
military command and control systems, space shuttle and urban traffic
control system. A small-scale system may include medium to minia-
ture modular robotics. Various interesting research and studies are on-
going on how data fusion could enhance such systems where multiple
sensors are used in different subsystems. Studies include a network of
sensors (for example a network of unattended sensors where the sensors
are normally cheap, small and easily transportable), a network of plat-
forms (both static and mobile platforms, trying to fulfill network centric
warfare), cooperative capabilities among platforms or subsystems and
agent-based negotiation among platforms.

– A system with a central processor. This includes the so-called platform-
centric types. Research in this area includes optimal resource allocation
of the multiple sensors, improved tracking and classification, particularly
for mission critical platforms such as fighter aircraft.

� Algorithm. There are many areas of research for improving algorithms. Some
of which are:

– State estimation, such as IMM algorithm with feedback, non-linear state
estimation techniques and information filter for decentralized state esti-
mation.

– Association, such as improving probabilistic multiple hypotheses track-
ing (PMHT) algorithms and combining of various association algorithms
with probabilistic techniques such as MHT with Bayesian networks.

– Deghosting - continuous research has been on going to solve some of this
NP-complete problem of fusing multiple input data from passive sensors.

– Low-level fusion, such as image fusion, better hybrid approach for object
discrimination.

– Fusion of different sensors using computational intelligence methods,
some of which are attempting to achieve adaptive data and information
fusion (this include doing away with some classical fix threshold setting).

� High-level fusion processes. Research into better learning, reasoning and
knowledge embedding and retrieval strategies. These include:
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– Research into better situation and impact assessment. Improved smart
or intelligent techniques of inferring activities and events. Research into
the cognitive informatics area for better pattern recognition, trend recog-
nition, military plan recognition and activities/events aggregation.

– Research into better resource allocation approaches such as using a com-
bination of computational intelligence methods with traditional resource
optimization approaches.

– Research into ontological engineering to represent knowledge and cap-
turing the sensor systems capabilities. This will enable fusion systems
interoperability and also facilitate working with different sensor systems.
Readers may refer to the appendix for an introduction to ontology.

As you fuse, remember the source.
The fusion of a human egg and sperm does produce intelligent beings.

G.W. Ng
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CHAPTER 6

How to Associate Data?

It is better not to say anything than to say the wrong thing.
Common words of wisdom

6.1 Why Data Association

Data association is one of the important steps in the chain of a data fusion process.
Data associations are also important in many other fields of studies. Data association
addresses the problem of how to differentiate, identify and associate the correct data
to the right object, given a set of data. These include clustering of data, data mining
and correlating the data. Irrespective of how good the backend algorithm maybe,
such as tracking algorithm or classification algorithm, the fusion process will fail
without a good association of data from multiple sources.

Data association is needed across the data fusion level, so long as the fusion at
each of the levels has different data being sent or considered. At each of the fusion
processes, data association problems could be defined and handled differently. This
is mainly due to the difference in data features, data density and the different need
of the fusion process (such as tracking, identification or situation/impact assessment
needs).

For example, the need of tracking in the level 1 fusion process, data association is
defined as the process of assigning a new measurement to a target in order to perform
the filtering operation. The wrong association of data will result in poor tracking
performance. The association algorithm may be different in different environments.
By environment, we refer to:

� Target densities. In a multitarget tracking environment many targets are ob-
served simultaneously.

� Clutter densities. The problem in a cluttered environment is too many false
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returns within the correlation gate. The difficulty of tracking a manoeuvring
target through a cloud of spurious returns generated by clutter, false measure-
ment, or man-made interference, arises from the uncertainty in plot-to-track
association. The problem is even more difficult when there are multiple ma-
noeuvring targets.

Hence, it is important to have reliable data association techniques in order to properly
track the targets in view. This general problem is discussed in detail in seven books
[16, 12, 31, 227, 18, 93, 30]. The content in this chapter draw information from these
seven books, particularly in the perspective of tracking system.

6.2 Methods of Data Association

Data association methods could be classified into various groups. One of the com-
mon grouping is shown in Figure 5.15 (see chapter 5.5). In the context of tracking
targets, data association can be classified into:

� Target-oriented approach. This approach assumes that each measurement has
originated from either a known target or clutter.

� Track-oriented approach. This approach hypothesizes that each track is either
undetected, terminated, associated with a measurement, or linked to the start
of a manoeuvre.

� Measurement-oriented approach. This approach generates a number of can-
didate hypotheses based on the measurement received and evaluates these hy-
potheses as more measurement data are received.

Association algorithms specifically used for track formation are:

� Joint likelihood function method.

� Logic-based multitarget track initiation. The Hough transform is the well-
known method for initiating multiple target tracks.

� Roecker’s two-dimensional passive sensors method [197]. This method mon-
itors the residual sequence produced by the Kalman filter and the differences
in the inclination or hinge angles between sensors. Utilizing both monitoring
processes, incorrect return-to-track data association, incorrect track-to-track
data association (ghosting), and target manoeuvres can be detected. This mon-
itoring method is claimed to be much faster than the multiple hypotheses track-
ing (MHT) and joint probabilistic data association filter (JPDAF) approaches.

Another method of classifying the data association algorithms is the non-Bayesian
and Bayesian association techniques. Examples are:
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� Non-Bayesian association techniques:

– Nearest neighbour standard filter (NNSF)

– Strongest neighbour standard filter (SNSF)

– Generalized nearest neighbour filter (GNN) [4]

– Joint likelihood function method (track formation)

– Logic-based multitarget track initiation

� Bayesian association techniques:

– Probabilistic data association filter (PDAF)

– Multiple model probabilistic data association filter (MMPDAF)

– Interacting multiple model probabilistic data association filter (IMM-
PDAF)

– Joint probabilistic data association filter (JPDAF)

– Joint probabilistic data association coupled filter (JPDACF)

– Multiple manoeuvre model JPDA (M 3-JPDA) [128]

– Interacting multiple model with joint probabilistic data association filter
(IMMJPDAF)

– Multiple hypotheses tracking (MHT)

Here, data association will be discussed based on the following 4 groups namely:

� Nearest neighbour.

� Multiple hypotheses.

� Probabilistic data association (also known as All Neighbour Association).

� Graph-based data association

6.2.1 Two-stage data association process

In practise, data association is normally implemented in two stages, namely the
coarse and fine data association stages. The coarse data association stage serves
as a first step1in removing data that are clearly not associated to one another. For
example, a different classification type or different frequencies range or a sensor
detectable angle and range, such that the difference is greater than a certain thresh-
old. Coarse data association could generally use the nearest neighbour algorithms.
Gating criteria used in most correlation and association algorithms are basically per-
forming coarse association step. This is the step that will help prune the unnecessary

1Or first cut iteration by discarding unwanted data and cluster essential data.
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data or information to make the next stage of association more effective in term of
computational process and accuracy of results.

After the coarse data association, the association process will then proceed to
the fine association stage. The fine data association process will further refine the
association process and involves a lot more information, such as the error density,
the probabilistic of the uncertainty and the relationship between data sources or the
correlation 2. An important point to note is that the fine data association process may
also be closely related to the fusing of data. Hence, fine association for target track-
ing is also linked to the state estimator. It provides a closed loop path for the state
estimator, and both the algorithms (namely the state estimator and the data associa-
tor) work iteratively in improving the tracking process. For example, the IMMPDAF
(interactive multiple model probabilistic data association filter), where the state es-
timation performed by the IMM is with the PDAF algorithm, jointly working hand
in hand, in an iterative manner. The probabilistic approach of implementing the fine
data association for target tracking will be discussed in section 6.5. Some of the al-
gorithms used in the fine association process are probabilistic association methods,
bio-inspired methods and graph-based competitive methods.

6.3 Nearest Neighbour

This is the simplest data association technique and is often used as a coarse data as-
sociation stage. This method clusters or selects the data that is nearest to one another.
How near is near is a factor that is argueable and is most often decided by a threshold
value that is implemented by the designer. The threshold is either computed, based
on the worst case situation, or a sensible value chosen by the expert. In tracking,
the nearest neighbour method selects the measurement nearest to a predicted target
position.

The nearest measurement criteria can be based on:

� Absolute distance. Example jx1�x2j = D where x1 and x2 are the measure-
able state.

� Euclidean distance. Example kx1 � x2k = D or

� Statistical distance function. Example of the nearest measurement criteria ac-
cording to distance measurement is

D = [zi(k + 1)� ẑi(k + 1jk)]S(k + 1)�1[zi(k + 1)� ẑi(k + 1jk)]T

where S is the covariance matrix of the innovation and z is the true measure-
ment and ẑ is the predicted value.

2The computed values are also known as correlation strength.
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Improvement to the nearest neighbour method, such as the generalized nearest neigh-
bour filter [4], which uses a combination of the theories in nearest neighbour and the
probabilistic data association filter (PDAF), is also reported in the literature.

The strongest neighbour standard filter (SNSF) selects the strongest measure-
ment in terms of signal intensity among the validated ones. This assumes that signals
intensity information is available. A theoretical analysis and performance prediction
of tracking in clutter with strongest neighbour filters is found in [143].

However, the nearest neighbour approach may lead to very poor performance in
an environment where spurious measurements occur frequently.

6.4 Multiple Hypotheses

The multiple hypotheses method performs both the coarse and fine association stage
together. It generally start off by associating all the possible data generated at the
same instant of time - thereafter it will start to prune the wrong association. Depend-
ing on the pruning process, it will determine how close the association will be. There
are generally two types of multiple hypotheses methods. These are:

� MHT (Multiple hypotheses tracking) or sometimes also known as multiple
hypotheses testing.

� PMHT (Probabilistic multiple hypothesis tracking).

6.4.1 Multiple hypothesis tracking

MHT was developed for tracking multiple targets in a cluttered environment, thus it
treats the combined problem of target detection and tracking in an integrated frame-
work. The MHT hypothesis computation normally use Bayes rule or Bayesian net-
work.

Generally, researchers have claimed that MHT is better than JPDAF for lower
false target densities. The main limitation of MHT is the increase in computational
load when the target or false return density increases. This limitation is normally
overcome by means of pruning or fixed length windowing techniques. For a tracking
system, the MHT technique can be considered into the following two approaches:

� Measurement-oriented approach and

� Track-oriented approach.
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6.4.1.1 Measurement-oriented approach

The measurement-oriented approach was pioneered by Reid [196]. Reid’s tracking
algorithm is known as the standard multiple hypotheses tracking (MHT) algorithm.
MHT is one of the more suitable methods for tracking multiple targets in a clutter
environment.

The MHT generates a number of candidate hypotheses based on the measure-
ments received and evaluates these hypotheses as more measurement data are re-
ceived. If the hypothesis at time k is represented by H(k) = [h l(k); l = 1; :::; n],
then the probability of a hypothesis h l(k) can be expressed recursively using the
Bayes’ rule

P (hl(k)jZ(k)) = P (hg(k � 1); ai(k)jZ(k))
=

1

c
P (Z(k)jhg(k � 1); ai(k))

�P (ai(k)jhg(k � 1)) � P (hg(k � 1)) (6.1)

where hg(k�1) is the gth hypothesis of the set of hypotheses up to time k�1; a i(k)
is the ith possible detection-to-target assignment in the current scan; Z(k) is the set
of detections in the current frame; c is the normalization constant. Note that the first
term on the r.h.s. of equation (6.1) is the likelihood function of the measurement
set Z(k), given the joint prior and the current hypotheses. The second term is the
probability of the current data association hypothesis, given prior hypothesis h g(k�
1). The third term is the probability of the prior hypothesis from which the current
hypothesis is derived from.

The MHT algorithm has the ability to detect a new track through maintaining the
hypothesis tree structure. The probability of a true track is given through the Bayes
decision model as

P (�jZ) = P (Zj�) � Po(�)
P (Z)

where P (Zj�) is the probability of receiving the measurement data set Z given that
a true signal source � is present; Po(�) is the a priori probability of a true signal
source appearing with surveillance volume; and P (Z) is the probability of receiving
the set of detections Z. The details of the MHT algorithm can be found in [31].

MHT considers all the possibilities of not only track maintenance but also track
initiation and deletion in an integrated framework. It evaluates the probabilities that
there is a target from which a sequence of measurements originated. It does not
assume a known number of targets. The MHT considers all branching hypotheses
(including new tracks), hence it is a good method of insuring proper return-to-track
data association. However, as the number of cluster tracks and observations grow
as time elapses, the computational complexity will grow exponentially. Hence, its
practical implementability could be limited, especially for some processors-limited
applications [197, 64].
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In summary, the MHT seeks to find the most probable hypothesis through an
exhaustive search over all the hypotheses. The application of MHT to the infrared
surveillance system problem can be found in [29].

6.4.1.2 Track-oriented approach

The track-oriented approach is proposed in [10] to deal with data association problem
in multitarget tracking. This approach hypothesized that each track is undetected, ter-
minated, associated with a measurement, or linked to the start of a manoeuvre. In this
approach, the number of data association hypotheses could increase rapidly, with the
increase in the number of targets and the number of measurements. Therefore, in a
multitarget tracking algorithm, the computational cost for data association hypothe-
ses would be excessive when the number of targets and the number of measurements
are large.

However, it is claimed that a track-oriented MHT is computationally more ef-
ficient. All associations with a sufficiently high quality, based on the closeness of
measurements and tracks, such as those measured by a logarithmic probability quo-
tient, are retained to form new alternative tracks. The probabilities that each alterna-
tive track is correct, based on the assumption that there is only one target, are then
computed recursively using Bayesian techniques.

6.4.2 PMHT

PMHT was introduced by Streit and Luginbuh in 1994 and subsequently being stud-
ied and enhanced by a number of researchers [239, 200]. PMHT addresses the prob-
lem of origin uncertainty in multitarget tracking when multiple measurements are
received without target labels; that is, the target of origin of a measurement is un-
known.

PMHT is derived by formulating a joint meaurement-assignment density, where
the measurement-to-track assignments are modeled by a discrete but unknown ran-
dom variable. The joint density is marginalized over the assignments, and the Expectation-
Maximization (EM) method is used to estimate a set of measurement-to-track prob-
abilities for each measurement and each target model. The PMHT method assume
the number of target models and the synthetic measurements are known. For a more
detailed discussion of this method, reader may refer to [239, 200].

6.5 Probabilistic Data Association

Probabilistic data association is also known as the all neighbour method. This method
most often handles the data association at the fine stage.
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6.5.1 Probabilistic data association filter (PDAF)

The PDAF was first proposed by Bar-Shalom and Tse [20]. The algorithm assigns a
probability, called the association probability, to every hypothesis associating a val-
idated measurement to a target. The validated measurements refer to measurements
that lie in the validation gate of a target at the current time. A validation gate centred
around the predicted measurement of the target set up to select the set of validated
measurements is

(z(k)� ẑ(kjk � 1))TS�1(k)(z(k)� z(kjk � 1)) � 
 (6.2)

where S(k) is the covariance of the innovation and 
 determines the size of the gate.
The set of validated measurements at time k is

Z(k) = zi(k); i = 1; :::;mk (6.3)

where zi(k) is the ith measurement in the validation region at time k. This is also
known as the ‘all neighbour’ modified filter.

The standard PDAF equations are as follows [195]:

State prediction

x̂(kjk � 1) = F x̂(k � 1jk � 1) (6.4)

Measurement prediction

ẑ(kjk � 1) = Hx̂(kjk � 1) (6.5)

Innovation of ith measurement

�i(k) = zi(k)� ẑ(kjk � 1) (6.6)

Covariance prediction

P (kjk � 1) = FP (k � 1jk � 1)F T +GQGT (6.7)

Innovation covariance and Kalman gain

S(k) = HP (kjk � 1)HT +R (6.8)

K(k) = P (kjk � 1)HTS(k)�1 (6.9)

Updated covariance if target originated measurements were known

P o(kjk) = P (kjk � 1)�K(k)S(k)K(k)T (6.10)
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Overall covariance update

�(k) =

mkX
i=1

�i(k)�i(k) (6.11)

P (kjk) = P o(kjk) +K(k)[�o(k)S(k) +

mkX
i=1

[�i(k)�i(k)�i(k)
T ]

� �(k)�(k)T ]KT (k) (6.12)

where mk is the number of validated returns at kth instant. Updated state estimate

x̂(kjk) = x̂(kjk � 1) +K(k)�(k) (6.13)

The PDAF association probabilities are [205, 50]

�i(k) =
pi(k)Pm(k)

i=0 pi(k)

where

pi(k) =

8<
:

�(1� PdPg) if i = 0
Pd

(2�)M=2jS(k)j1=2
exp[� 1

2ri(k)
2] if [
(k)] = 1; i 6= 0

0 otherwise

and � = mk

V (k) , V (k) = �M=2

�(M=2+1)

M jS(k)j1=2,[205]


(k) =

�
1 if the return belongs to the validation gate of the target
0 otherwise

M is the dimension of the state vector and � is the clutter density. Pd is the proba-
bility of detecting the correct return and Pg is the probability of validating a detected
return.

A weighted average of the state, estimated under all the hypotheses associating
different measurements (returns) to a particular target serves as the PDAF estimate
of the state of that target. The associating of different measurements to a particular
target serves as the PDAF estimate of the state of that target. Hence, the association
probabilities are used as weights.

The disadvantages of the PDAF are:

� Miss-tracking. Since the PDAF ignores the interference from other targets, it
may, sometimes, result in miss-tracking of closely-spaced targets [82]. Hence,
may perform poorly while tracking is crossing targets or when the targets are
close to each other.

� Suboptimal Bayesian approach. The PDAF is a suboptimal Bayesian approach
to the problem of tracking when the source of measurement data is uncertain,
due to clutter and missed detections.
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� Single target only. The PDAF is designed for the association of a single target
in a clutter. The number of false alarms is usually modelled by a Poisson
density and false alarms are assumed to be distributed uniformly in space.
When there are multiple targets in a surveillance area, the PDAF does not
perform well, because the false alarm model is no longer valid. It is due to the
persistent returns generated by interfering targets.

� Need to provide separate track initiation and deletion algorithms. PDAF as-
sumes that a track has been established and, therefore, track initiation and
deletion algorithms have to be provided separately.

� Mainly good for tracking non-manoeuvring targets in cluttered environments.
If the target undertakes a manoeuvre, it is highly likely that the PDAF will lose
the target track [153].

Various modifications to combine and improve the PDAF with the state estima-
tion are suggested. Most of these algorithms are discussed in Bar-Shalom and Li
[18]. Here, we will just state the algorithms, their assumptions and advantages.

� Multiple model probabilistic data association filter (MMPDAF). This is a com-
bination of the non-switching multiple model and the PDAF. The result is an
adaptive estimator that can adjust itself to the ‘true model’ of the target while
in a cluttered environment. The assumptions of the MMPDAF are:

– The system obeys one out of N models.

– The models do not switch in time.

– The models differ only in the process and/or measurement noise levels.

The MMPDAF can track a manoeuvring target in clutter with a number of
PDAFs, based on different models, that are running in parallel [18].

� IMM combined with PDAF (IMMPDAF). The IMMPDAF can be used to

– Initiate tracks.

– Carry out track maintenance for manoeuvring targets.

– Terminate tracks.

This is accomplished with the following set of models:

– Model 1: Undetectable target (no target).

– Model 2: True target moving with nearly constant velocity.

– Model 3: Motion with large acceleration increments.

– Model 4: Nearly constant acceleration motion.
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This approach assumes that the modelling assumptions are correct.

In [194], it is claimed that the IMMPDAF is incapable of performing track
detection when the signal-to-noise ratio (SNR) is low [194]. Hence, this tech-
nique may not recover from a track loss situation.

One improvement in a IMMPDAF is to use the amplitude information. Hence,
the technique is known as the IMMPDAFAI. IMMPDAFAI uses the statistical
information of the detector output for target returns and clutter to improve
track maintenance for low SNR targets in a dense cluttered environment [138].
The amplitude likelihood ratio

�i =
p�1(ai(k))

p�o(ai(k))
(6.14)

is used to modify the standard PDAF association probabilities to include am-
plitude discrimination. po(a) and p1(a) are probability density functions of
the amplitude if it is due to noise only and if it is originated from a target,
respectively. The amplitude likelihood ratio term affects the association prob-
abilities by favouring a high amplitude measurement.

� Directional probability data association (DPDA) [50]. The DPDA incorpo-
rates the directional information and the association probabilities which are
estimated using both the Mahalanobis distance and the track direction.

� Exponentially weighted probabilistic data association filter (EWPDA) [153].
In [153], it is claimed that the algorithm can track a manoeuvring target in a
cluttered environment.

6.5.2 Joint probabilistic data association filter (JPDAF)

JPDAF is designed for tracking multiple targets in a clutter environment. The JPDAF
is the same as the PDAF, except that the association probabilities are computed using
all observations and all tracks [82]. It seeks to determine the probability � t

i that
measurement i originated from target t. Hence, for a known number of targets it
evaluates the measurement-to-target association probabilities (for the latest set of
measurements) and combines them into the corresponding state estimates.

If the association probability � ti (k) is known, the Kalman filter update equation
track t can be written as:

x̂t(kjk) = x̂t(kjk � 1) +K(k)��t(k)

where x̂t(kjk) and x̂t(kjk � 1) are the estimate and prediction of the state of target
t respectively. K(k) is the filter gain and a weighted sum of the residuals associated
with the m(k) observation to target t is

��t(k) =

m(k)X
i=1

�ti (k)�
t
i (k)



120

where �ti (k) = zi(k) � Hxt(kjk � 1). Therefore, it incorporates all observations
within the neighbourhood of the predicted target position to update the position esti-
mate using an a posteriori probability weighted sum of residuals. Targets are divided
into clusters.

In the JPDAF the joint probability is calculated over all targets and measure-
ments (or sometimes known as hits). The joint probability is the probability of all
the individual events combined as a joint event. The JPDAF includes the possibil-
ity of multiple measurements in one-track extension gate coming from other targets.
Similar to the PDAF, the JPDAF algorithm performs associations only on the last
frame using established tracks and is, therefore, unsuitable for track initiation [186].

The constraints of the JPDAF are:

� No measurement can come from two targets.

� No two measurements can come from the same target.

� Pm(k)
i=0 �ti (k) = 1.

� �ti (k) should be large if �ti is large.

� �ti is allowed to be large when � ti is small for all T 6= t.

The JPDAF is reported to be better than MHT when the false target densities are
high, such as in sonar or radar air-to-ground tracking applications [31].

The disadvantages of the JPDAF are:

� Lack of an explicit mechanism for track initiation. A JPDAF assumes that
tracks have been established and the number of targets are known.

� Computationally intensive in multitarget and dense clutter environments. This
is because the number of possible hypotheses associating different returns to
targets under consideration increases rapidly with the number of returns - the
presence of clutters increases the complexity further. This may limit its prac-
tical application.

Various algorithms are discussed to modify and improve the JPDAF. These are
given below:

� Nearest neighbour joint probabilistic data association filter (NNJPDAF) ap-
proach. This approach differs only slightly from the conventional method of
recursive track-to-measurement association. Conventionally, the tracks are ex-
tended and the statistical distance from the predicted position to the measure-
ments in the extension gates are calculated. A two-dimensional assignment
is made to determine which individual measurement is to be used to update
a track. The simplest two-dimensional assignment is the nearest neighbour
algorithm.
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� Joint probabilistic data association fixed-lag smoother (JPDAS) is proposed in
[147] to improve the tracking accuracy. This algorithm combine the JPDAF
and the augmentation approach in [28]. This method shows that a significant
improvement in the accuracy of track estimation of both non-manoeuvring and
manoeuvring targets can be achieved by introducing a time lag of one or two
sampling periods between the instants of estimation and latest measurement.

� IMMJPDAF [14, 11]. IMMJPDAF refers to IMM combined with a JPDAF to
form a new algorithm that claims to be able to track a target that ‘splits’ into
two targets in a clutter environment. This algorithm evaluates the split-track
probability. It is a generalization of the IMMPDAF algorithm.

To incorporate the splitting into two targets, two new models are added on top
of those discussed in the IMMPDAF approach, namely the ‘Just split’ target
and the ‘Split target’ models.

� Nearest neigbour probabilistic data association (NNPDA) [78]. This is a mod-
ification of the JPDAF in which the probabilities of association are used to
associate observations with track files directly on a one-to-one basis.

The JPDAF method has been extensively used in sonar and other surveillance
systems. The reported applications include: observations having random arrival
times [19], adaptive thresholding [81], unresolved measurements [49], and manoeu-
vre detection and tracking in a clutter [26].

6.6 Graph-Based Data Association

Graph theory is an old subject and has been used for many applications. One of the
applications is the task assignment problem, which is closely related to data asso-
ciation we discussed here. The association process for graph-based technique will
involve ploting the association graph3. Association graph consists a set of vertices
or points and a set of edges or links between vertices.

We will illustrate the construction of the association graph for removing false
target or deghosting 4. This application is particularly useful for fusion systems that
need to consider passive sensor system information. Most passive sensors, such as
ESM and acoustic sensor can only detect and process the direction of arrival (DOA)
or bearing of the target. The target location is then obtained by the triangulation of
the multiple bearings that are associated to the same target. However, associating
the correct bearings from multiple passive sensor systems to the right targets is not a
trivial problem.

3Note the term association graph was also used by Yen and Chen [246] for data mining algorithms.
4The false targets are also known as ghost targets. Hence, the word deghosting means removing of the

false target.



122

6.6.1 Association graph

Each vertex of the association graph represents a bearing, and the edge between two
vertices represents the association strength between the two bearings. Only bearings
from different sensors have edges. The coarse data association will remove or cut
the edge that does not meet the criteria. For example, the criteria could include:

� Triangulated location is within the sensor system detection range.

� Bearings are not in parallel or more than 90 degrees apart.

� The bearings are referring to the same target type.

Figure 6.1 shows the association graph of a simple scenario.

BT1 

BT2 
BT3 

BT4 

Sensor 1 Sensor 2 

BT1 

BT3 BT2

BT4 

Figure 6.1: A simple scenario and its association graph.

The vertices are fBT1; BT2; BT3; BT4g, and the edges are fBT1�BT3; BT3�
BT2; BT2�BT4; BT4�BT1g.

6.6.1.1 Association strength

The association strength 5 on each edge is a critical part to decide whether two
linked vertices should be associated together. The computation method of associa-
tion strength may be different on different types of sensor systems. Here we assume
that sensor systems have three measurements that can be used to compute the as-
sociation strength. For example, in the electronic support measure (ESM) the three

5Sometime also known as correlation strength.
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measurements could be the frequency, pulse repetitive interval and the pulse width.
The association strength s is computed by:

s =
w1s1 + w2s2 + w3s3

w1 + w2 + w3
(6.15)

where s1; s2; s3 are three measurements, and w1; w2; w3 are the three weights of
s1; s2 and s3 respectively.

6.6.2 Competing edges

The term competing edge in an association graph comes from the concept of compe-
tition. We view two vertices, 1 and 2, as competing to associate with another vertex
3, if the two vertices 1 and 2 are not compatible, but each of them could be compat-
ible with vertex 3. The edge between vertex 1 and 3 and the edge between vertex 2
and 3 are defined as competing edges.

In Figure 6.2, on the left graph, vertex 1 and vertex 2 are not compatible due to
the weak association strength between them (0:1), but both of them are compatible
with vertex 3. Therefore, we define edge 1� 3 and edge 2� 3 as competing edges.
However, on the right graph, edge 1� 3 and edge 2� 3 are not the competing edges.
This is because vertex 1 and vertex 2 has strong association strength of 0.7.

3 

1 2

0.9 0.8 

0.1 

3

1 2

0.9 0.8 

0.7 

Figure 6.2: Competing edges

6.6.2.1 The reduction algorithms

After computing the association strength on all the edges, the edges on the associ-
ation graph can be further cut. There are two important values to be assessed: The
first is the local strength of a edge between two vertices, which is simply the raw as-
sociation strength, as computed in equation 6.15. The second is the global strength
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of an edge. The global association strength is computed by taking the local strength
and subtracting the maximum of all the local strengths of the competing edges. This
indicates the relative strength of the edge under competition from other edges.

There are two steps to cut edges. We use the example in Figure 6.1 to illustrate
the steps. Its association graph with local association strengths is shown in Figure
6.3.

BT1 

BT3 BT2

BT4 

0.9 0.8

0.4 

0.2 

Figure 6.3: Association graph with local association strength.

Step 1: Cut edges by the local association strength. The edges will be cut if their
local association strengths are less than a predefined threshold. Assume the threshold
is defined as 0.3, then the edge BT2�BT3 is cut.

Step 2: Cut edges by the global association strength. The global association
strength will be computed for the remaining edges. If the global association strength
is greater than a predefined threshold, then the edge is not to be cut, but all its compet-
ing edges are cut. If the global association strength is not greater than the threshold,
the edge is to be cut. For example, in Figure 6.4 (left graph) we assume the threshold
is defined as 0:2. The global association strength of edge BT1�BT3 is 0:5, which
is greater than the threshold. The edgeBT1�BT3 is not to be cut, but its competing
edge BT1� BT4 is cut. The process iterates till all remaining edges are checked.
The final result is shown on the right graph of Figure 6.4.

The association graph algorithms can be summarized as follows:

1. Construct the association graph.

2. Prune the edges by coarse association.

3. Calculate the local association strength for the remaining edges.

4. Cut the edges by thresholding the local association strength.
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Figure 6.4: Association graph with global association strength

5. Compute the global association strength.

6. Cut the edges by thresholding the global association strength.

6.7 Data Association using Bio-inspired Algorithms

There may be potential new ways we could learn and engineer by understanding
how nature associates entities. One of these key areas is understanding how our
brain could seamlessly associate large volumes of data and information. This could
be one of the most interesting research areas.

Although we are far from achieving the way nature associates the multitude of
data and information coming from our sensory systems, some researchers have tried
using biologically inspired (bio-inspired) techniques, such as neural network and
fuzzy logic, to enhance existing data association algorithms. These methods will be
briefly discussed in the next subsection.

6.7.1 Neural data association methods

The central feature of the PDAF and JPDAF is the determination of association prob-
abilities �ti . Since the computation of association probabilities is complex, especially
with the presence of clutter, the neural network approach is suggested to improve the
computational efficiency of � ti .

The main motivation for using a neural network is the claim that the complexity
of computing the association probabilities is reduced. As far as we know, literature
survey reviewed that there are 2 types of neural networks used for data association,
namely:
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� Boltzmann machine networks [107, 108].

� Hopfield neural networks [205, 139].

In [107], Iltis and Ting show that the Boltzmann machine network, with simple
binary computing elements, can estimate the association probabilities. The results
are similar to the JPDAF, however with less computational load. Iltis and Ting have
also shown in [108] that by using sufficient parallel Boltzmann machines the associ-
ation probabilities can be computed with arbitrarily small errors.

The Hopfield’s neural network for computing the association probabilities is
viewed as a constrained optimization problem. The constraints are obtained by a
careful evaluation of the properties of the JPDA association rule. The problem is
formulated in the same manner as the Hopfield’s travelling salesman problem (TSP).
That is, the energy function of the data association problem is similar to the energy
function of the TSP. In the data association, by minimizing the energy function, it is
hoped that the association probabilities � ti from the likelihoods could be computed
accurately with minimum computational load.

The use of the Hopfield neural network to compute � ti (k) was first demonstrated
in [205]. The distance is measured from track to measurement. The energy function
of the data association problem (DAP), using the Hopfield neural network, is given
as follows [205]:
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The solution from equation (6.16) is calculated using the neuron input-output transfer
function to obtain the neuron output voltage (association probability) [55]:

�ti (k) = V t
i = f(uti) =

1

2
(1 + tanh(uti)) (6.17)

�ti is approximated from the output voltage of V t
i of a neuron in an (m+1)�n

array of neurons, where m is the number of measurements and n is the number of
targets.

The connection weights are given as:

Txi;yi = �AÆxy(1� Æij)�BÆij(1� Æxy)

�C �Ddxy(Æjj+1 + Æjj+1)

Ixi = Cn

In [139], a modified Hopfield network is used to approximately compute � t
i .

This modified Hopfield network uses the Runge-Kutta method and the Aiyer net-
work’s structure [2]. Using the Aiyer network structure, the new connection weights
are given as:

Txi;yi = �AÆxy(1� Æij)�BÆij(1� Æxy)� 2A1ÆxyÆij

�C + 2(An�A+Ai)=n
2 �D(1� Æij)(1� Æxy)(dxi + dyj)

Ixi = Cn

and with the following recommended choice of choosing the parameters (A;B;C;D;A 1):
B = A and A1 =

31
32A and C = A

10 .

The performance of the neural data association depends mainly upon the selec-
tion of these five parameters. The modified Hopfield neural network is shown to
have a much better performance in the sense that it follows the correct path closer,
especially in the manoeuvre region.

It is claimed that the advantage of using the Hopfield neural network is that
it reduces the complexity of computing the association probabilities. For a large
number of targets, it only requires a larger array of neurons as opposed to the digital
approach, which requires an exponential increase of computer resources.

The Hopfield neural network is also used to reduce a likelihood matrix, properly
defined, to the assignment matrix [209]. The neural network processes the elements
of the likelihood matrix to produce an assignment matrix.

6.7.2 Fuzzy logic and knowledge-based data association methods

Fuzzy logic and knowledge-based techniques are potentially possible techniques for
data association. Fuzzy logic has been applied to data fusion in a number of ways.
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Stover et al. [215] have developed a general purpose fuzzy logic architecture. How-
ever, using fuzzy membership functions for data association is a new untested area.

Using a knowledge-based approach is proposed by [249]. The function of the
filter is to classify the radar measurements within the gate into two groups, namely
the true returns and false returns. When the returns (measurements) are received,
the respective aligned radar attributes to these returns are sent to the expert system.
According to the rules stored a priori, a probability mass m(a i) is assigned to each
return, where i = 1; 2 indicate whether the return is true or false, respectively.

Fusion systems should make as little mistakes as possible. Hence, the fused results
should be of high certainty, if not, it is better to return the unprocessed data to the

human operator for interpretation.



CHAPTER 7

Aspects of Target Tracking

7.1 Introduction

This chapter will cover the essential components needed for understanding tracking
systems, and particularly the algorithms used for target tracking. It does not intend
to cover all the fundamental theory, derivation and proof of the tracking algorithms
and the various equations used. Readers who would like to know such details can
refer to the references quoted.

Tracking is defined as the estimation of the state of a moving target [18]. Exam-
ples of the state of a moving target are:

� bearing and rate of change of bearing (for one-dimensional measurement data).

� position, velocity, acceleration (for two or three-dimensional measurement
data).

The moving targets described here refer to any man-made moving objects such as
trucks, missiles, planes, submarines, ships and other engine or non-engine driven
vehicles.

The heart of the tracking system consists of two main components, namely: the
data association module and the kinematics state estimation module. The focus of
this chapter is the kinematics state estimation module. The core part of the kinemat-
ics state estimation is the filtering and prediction algorithm. There are many different
types of filters, such as the fixed-gain filter (also called the fixed-coefficient filter, or
more commonly, it is known as the �-� and �-�-
 trackers), the Kalman filter and,
more recently, the adaption of the Kalman filter in the multiple-model form such as
interactive multiple model (IMM). Other filters, such as particle filter and condensa-
tion algorithm, could also be used for state estimation. However, the Kalman filter
and its various adaptations have been the main workhorse and more popularly used
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for the estimation of states. Note that early tracking algorithms, such as the fixed-
gain filter (e.g. �-� and �-�-
 filters), can also be viewed as a form of Kalman filter
only that its ‘Kalman’ gain is fixed.

Though the Kalman filter provides good performance and is efficient in tracking,
it has limitations in handling highly non-linear and manoeuvring targets. To solve
the problem, some Kalman filter-related approaches were developed. They are:

� Extended Kalman filter: It uses the first-order approximation to solve the non-
linear problem.

� Varies adaptive Kalman filters: It turns the Kalman filter parameters on real
time to reduce manoeuvring effects. The parameter turning can be based on
fuzzy logic, neural networks or other parametric algorithms.

� Separate-bias Kalman estimator: Uses two parallel filters. The first filter, the
bias-free filter, is based on the assumption that bias is non-existent. The second
filter, the bias filter, produces an estimate of the bias vector. The final output
is from the first filter corrected by the second filter [106].

� Single model switching approach: A manoeuvring detector and several models
exist in the tracking system. Only one model is active at a given time, and the
manoeuvring detector decides the model selection.

� Interactive multiple model (IMM) filter: Multiple models run in a parallel
manner, where the final target state is the combined state based on mode prob-
ability. The mode probability is computed using the residual of measurement
[11].

� Interacting acceleration compensation (IAC) filter: It is a hybrid approach
combining the IMM with the separate-bias Kalman estimator. However, the
performance is not better than the IMM [234].

� Multiple model with feedback: It also uses parallel multiple models, as the
IMM, but the state combination is based on the covariance of state in each
model [5].

In recent years, many researchers introduced the sequential Monte Carlo meth-
ods in tracking systems, and proposed particle filters to solve non-linear non-Gaussian
problems. There are several methods in particle filters, such as, bootstrap filter,
Monte Calro filter, and conditional density propagation (CONDENSATION) from a
field of computer vision. Some hybrid algorithms, combining Kalman filters with
particle filters, also appeared recently.
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7.2 Basics of a Tracking Process

Target tracking is part of the data processing and can be implemented on a general-
purpose processor in a software form or burnt-in a processor card. Figure 7.1 shows
how the tracking system will receive data from a typical sensor system.

Environment

Receiver

Aperture/

Processing

Targets

Data Processing

Tracking System
other signals

Background and Signal 

Sensor 

Figure 7.1: Concepts of sensor-to-tracking system.

Figure 7.2 shows the basic block diagram and the flow of the sensor data in a
tracking system.

A track formation stage involves two important parts. These are:

� Association - Clustering data that refer to the same target.

� Initiation of track - This involves starting up a tentative track and confirming
the track. A tentative track is created for any new data detected that is not
associated to any existing tracks. A detection ratio is then normally used to
confirm the tentative track and is computed based on a number of detections
over the number of scans; where scan refers to the update rate of the sensor.

Track maintenance is the process of maintaining a confirmed track. Filtering of
the sensor measurement data play the key role in this process. The steps of a typical
filter at time k are:

1. Receive input measurements at kth scan.

2. Compute the estimated state using the computed gain, the predicted state and
the measured state (smoothing process).

3. Output the estimated state.

4. Compute the next predicted state (k + 1)(prediction process).

This filtering process is also known as state estimation. In this context, the fixed-gain
filter and the Kalman filter will be introduced at an elementary level. The concepts
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State Estimation - Filtering
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Track

 Formation

Data

State
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Output

Input
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Track

Measurement

Figure 7.2: Basic tracking stages in a typical tracking system.

behind the multiple model, which is the current state-of-the-art technology for target
tracking, will also be presented.

Part of the track maintenance process is to check for deleting track that does not
fulfil the updating criteria. The updating criteria depend on the number of scans or
update of measurement data on the same target. A simple form of updating criteria
is: if no measurement is received for over N scans, then the track will be deleted.

7.3 Problem Formulation

The dynamics of a system model of a manoeuvring target in a tracking system is
given by

_x = f(x; u; w) (7.1)

z(k) = h(x(k); v(k)) (7.2)

where x is the state vector, u is the control vector, w is the process noise vector rep-
resenting possible deviations in f(:). z(k) is the discrete-time measurement vector
at time k, and v(k) is the measurement noise vector.

The dynamics of the target is a continuous-time process as indicated by equation
(A.17). f(:) defines the motion for the target in a form of a differential equation.
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The measurement process is in discrete-time because most sensors used for target
tracking record the position and velocity at a given instance of time. Hence, the
measurement equation (A.18) in discrete form is

z(k) = H(k)x(k) + v(k) (7.3)

The function f(:) is usually unknown to the tracking system. Hence, the tar-
get dynamics are commonly modelled by a deterministic linear dynamic system in
discrete time, as follows:

x(k + 1) = F (k)x(k) +G(k)u(k) + w(k): (7.4)

At time k, x(k) (assumed to be a vector of dimension nx) is the state of the system
normally containing the position and velocity of the target. F (k) is the transition
matrix of dimension (nx�nx) and it defines a linear constraint on the target dynam-
ics, u(k) is the unknown input control, a vector of dimension nu, G(k) is the input
gain (or noise matrix) (nx�nu matrix) and w(k) � N(0; Q(k)) is the process noise
which is usually assumed to be white Gaussian noise with variance Q.

In tracking manoeuvring targets, the control vector is not directly observable by
the tracking system. Since the input control is unknown, the dynamics model that is
assumed for a target in a tracking system is further simplified as follows:

x(k + 1) = F (k)x(k) + w(k) (7.5)

The process noise w(k) can be used to model the unknown target acceleration.
The unknown acceleration term can also be included in x to form a third-order model.
However, the acceleration most often varies with time in such a manner that a model
cannot be clearly identified during tracking.

Furthermore, target manoeuvres are generally neither a stochastic process nor
have a predictable motion. For example, modern weapon systems equipped with
advance technology, such as a missile guidance program, may produce target of
uncertain and highly manoeuvring behaviour. This results in a bias or lag in the
target state estimation.

The following section describes the various tracking algorithms.

7.4 Fixed-gain Filter

Fixed-gain filters, such as the �-� and �-�-
 filters, are among the early tracking
algorithms. The gains of such filters are precalculated and remain fixed throughout
the entire tracking process.

The standard�-� filter can be used to track non-manoeuvring targets. The exten-
sion of the �-� filter is the �-�-
 filter. The �-�-
 filter is designed for manoeuvring
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targets with constant acceleration. The 
 relationship can sometime be expressed as

 = �2

2� [117]. This filter will be biased if the acceleration varies with time through-
out the manoeuvre.

The �� � filter is defined by the following equations:

xs(k) = xp(k) + �[xo(k)� xp(k)]

v(k) = v(k � 1) +
�

T
[xo(k)� xp(k)]

a(k) = a(k � 1) +



T 2
[xo(k)� xp(k)]

and prediction process is described by

xp(k + 1) = xs(k) + Tv(k)

where x0(k) is the target’s observed position (or measured position) at the kth scan,
xp(k) is the target’s predicted position using information at the (k�1)th scan, x s(k)
is the smoothed target position, v(k) is the target velocity, a(k) is the target acceler-
ation, T is the radar scan time and �, � and 
 are the fixed-gain filter parameters.

The �-� filter and �-�-
 filter are explained in a number of books and literature
such as [17, 31, 117].

The advantages of fixed-gain filters are its simplicity and low computational
cost. The disadvantages include:

1. Gains selected are fixed, hence it can represent only one form of target motion.

2. Limited ability in clutter environment.

3. May have stability problem under extreme circumstances due to decoupling
(independent of �; � and 
 values).

We can overcome this filtering dilemma by initially starting with a small � until
the manoeuvre is detected, then increase � for tracking manoeuvring targets. But the
problems are:

� the response of the filter is significantly delayed because the gains are not
increased until a manoeuvre is detected.

� the � gain must be set artificially high for ��� tracker in order to account for
the absence of acceleration from the motion model.

� after the target goes back to constant velocity following a manoeuvre, the de-
cision to reduce � is often delayed.
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Despite such disadvantages, fixed-gain filters are still in use for tracking appli-
cations, particularly for system using a burnt-in tracking processor. This is partly
because the filters have low computational costs, simple to implement and a number
of modifications have been done to improve it. Some of these modifications are:

� Variable update time �-� filter [59]. This filter has the update time chosen
according to the magnitude of the difference between the measured and the
predicted positions.

� Speed-dependent gain

� = k1 � speed+ k2

� = k3 � speed+ k4

� and � are dependent on the speed. k1; k2; k3 and k4 are fixed values and are
decided by the designer or user.

� Gain adjustments based on residuals [44]. This approach works by reducing
� and � if the measurement errors are unbiased (speed and headings are ac-
curate); as soon as a bias appears, � and � begin to increase. To compute the
� and � values, the filter needs to recursively estimate the variances of the
measurement noise (x, y, z for Cartesian and range and azimuth in polar coor-
dinates) and the covariance of the successive measurement errors (a measure
of how the variance is changing).

The measurement error here is the residual. This has some similarity to the
Kalman filter in that both are using the residual to adjust its gain.

� Fuzzy rule to tune the �-�-
 values [48].

7.4.1 What are the criteria for selecting the fixed gain?

The first problem is to find a means to optimally select a value for � and �. An
optimal relationship of � and � is

� =
�2

2� �
(7.6)

The relationship of � and � is plotted as ‘*’, as shown in Figure 7.3. The important
point to note in this relationship is that good noise reduction requires a small �
(hence, small �), and good tracking through manoeuvres requires a large �.

A means for selecting � was introduced by Kalata [117], who defined a variable
known as the tracking index �, where

�(k) =
�vT

2

�w
=

�p
1� �

:



136

He also suggested the relationship:

� = 2(2� �)� 4
p
1� � (7.7)

This relationship is more useful in steady state conditions. The � and � relationship
is as shown in Figure 7.3.

In general, the recommended fixed values for � and � at the start are:

� = 0:5

� = 0:167
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Figure 7.3: Relationship between � and � values. Solid line is plotted from
equation (7.7) and ‘*’ is plotted from equation (7.6).

7.5 Kalman Filter

Kalman filtering is an optimal state estimation process applied to a dynamic system
that involves random perturbations. More precisely, the Kalman filter gives a lin-
ear, unbiased, and minimum error variance recursive algorithm to optimally estimate
the unknown state of a dynamic system from noisy data taken at discrete real-time
intervals [57].
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The study of Kalman filtering alone has resulted in the publication of a num-
ber of books and many journal articles. The advantages of using the Kalman filter
include [30]:

1. The gain sequence is chosen automatically, based on the assumed target ma-
noeuvre and measurement noise models. This means that the same filter can
be used for varying targets and measurement environments by changing a few
key parameters. For example, as a target closes in range, its intensity increases,
so angular measurement accuracy usually improves.

2. The Kalman gain sequence automatically adapts to changing detection histo-
ries. This includes a varying sampling interval as well as missed detection.

3. The Kalman filter provides a convenient measurement of the estimation accu-
racy through the covariance matrix. This measure is required to perform the
data association functions.

4. Having a measure of the expected prediction error variance is useful for ma-
noeuvre detection.

5. Upon detection of a manoeuvre, the Kalman filter model provides a convenient
way to adjust for varying target dynamics.

6. Through use of the Kalman filter it is possible to, at least, partially compensate
for the effects of misassociation in the dense multiple target tracking environ-
ment. For example, an increase in the Kalman covariance matrix elements to
reflect the expected error associated with uncertain data association.

However, there are a few disadvantages. These include:

1. Target probability density function (pdf) is assumed Gaussian. But in many
applications this assumption is inappropriate.

2. Higher computational load than the fixed-gain filter.

The Kalman filter equations are expressed as

x̂(kjk) = x̂(kjk � 1) +K(k)[~z(k)] (7.8)

P (kjk) = [I �K(k)H ]P (kjk � 1) (7.9)

where

K(k) = P (kjk � 1)HT (S(k))�1

S(k) = HP (kjk � 1)HT +R

~z(k) = z(k)�H(k)x̂(kjk � 1)
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and z(k) is the measurement value, ~z(k) is the residual (or innovations) vector (dif-
ference between the observed and predicted values), P is the Kalman filter covari-
ance matrix. S(k) is the residual covariance matrix and R is the measurement error
covariance matrix. R elements are normally fixed. For a one-dimensional measure-
ment, R becomes a scalar measurement, the noise variance � 2. H is the measurement
transition matrix

Prediction of the next stage:

x̂(k + 1jk) = F x̂(kjk) +G(k)u(k)

P (k + 1jk) = FP (kjk)F T +Q

whereG(k)u(k) = f(k+1jk) is assumed to be a known deterministic input, such as
the relative position change associated with ownship motion. Q is the process noise
covariance matrix, is assumed known and Gaussian. P (k + 1jk) is the prediction
error covariance matrix.

The error covariance matrix is defined in terms of the zero-mean Gaussian esti-
mation error vector:

P (k) = E[x(k) � x̂(k)][x(k) � x̂(k)]T

The Kalman filter can also be explained as consisting of a low gain filter (for
the nearly uniform motion) and a high gain filter (for the manoeuvring situation)
[142]. Increasing Q will make the Kalman filter more responsive to future target
dynamics. Hence, the first method to overcome the manoeuvring problem is to make
the Kalman filter more responsive by varying the process noise.

If a target is manoeuvring, then one motion model will be inadequate to describe
the full range of possibilities. Hence, multiple model approach are used for tracking
manoeuvring targets.

7.6 Multiple Model Approach

The basic idea of all multiple model approaches, as applied to tracking manoeu-
vring targets, is that manoeuvres are typically abrupt deviations from basically a
straight-line target motion. As this process is very difficult to represent with a single
manoeuvre model, multiple models, representing different potential target manoeu-
vre states, run in parallel and are continuously evaluated by using the history of the
filters’ residuals.

The multiple model approach, particularly the IMM method, is currently the
most widely accepted method for difficult manoeuvring target conditions.

Bayes’s rule and the residuals are used to determine the relative probabilities
of validity of the models. The output is typically a probability-weighted composite
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of the individual filters, otherwise, it may prove to be more accurate to output the
estimates from the filter with the highest probability.

Referring to equation (A.21), for the multiple model approach, the ith dynamics
model is denoted by

xi(k + 1) = Fi(k)xi(k) + wi(k) (7.10)

7.6.1 IMM

The design of an IMM estimator consists of the following [18]:

� selection of the models for the various modes of behaviour of the system.

� selection of the Markov chain transition probabilities among the modes.

� selection of the parameters of the various models - typically the process noise
levels.

The IMM algorithm can be divided into the following four parts, namely:

� An input mixer (Interaction).

� A filter for each model (Updates).

� A model probability evaluator.

� An output mixer.

The flow diagram of an IMM filter with N models is given in Figure 7.4.

7.6.1.1 Input mixer (Interaction)

The input state estimate mixer merges the previous cycles mode-conditioned state
estimates and covariance, using the mixing probabilities, to initialize the current
cycle of each mode-conditioned filter.

The filtering process starts with the a priori state estimates x0j (k�1jk�1), state
error covariance Pj(k�1jk�1), and the associated probabilities �j(k�1) for each
model. The initial state estimate and covariance for model j at time k, M j(k), is
computed as:

x̂oj (k � 1jk � 1) =

NX
i=1

x̂i(k � 1jk � 1)�ijj(k � 1jk � 1)

P o
j (k � 1jk � 1) =

NX
i=1

�ijj(k � 1jk � 1)fPi(k � 1jk � 1) +
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Figure 7.4: The IMM filter.

[x̂i(k � 1jk � 1)� x̂oj (k � 1jk � 1)][x̂i(k � 1jk � 1)

�x̂oj (k � 1jk � 1)]T g
where

�ijj(k � 1jk � 1) =
1

�cj
pij�j(k � 1)

�cj =

NX
i=1

pij�i(k � 1)

and pij is the assumed transition probability for switching from model i to model j,
and �cj is a normalization constant.

7.6.1.2 Filtering updates

The updates for each subfilter or model are performed using the Kalman filter or
extended Kalman filter equations. Different models are used and usually there is
a second-order model with a few third order models. The second-order model is
dominating when the target is in non-manoeuvring state and the third-order model
for the manoeuvring state with different process noise levels.

An example of a set of Kalman filtering equations providing the model updates
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for Mj(k) is as follows:

xj(kjk � 1) = Fj(k � 1)x0j (k � 1jk � 1) +G(k � 1)U(k � 1)

Pj(kjk � 1) = Fj(k � 1)P 0
j (k � 1jk � 1)(Fj(k � 1))T +Qj(k)

Sj(k) = Hj(k)Pj(kjk � 1)(Hj(k))
T +R(k)

Kj(k) = Pj(kjk � 1)(Hj(k))
T (Sj(k))

�1

~zj(k) = zj(k)�Hj(k)xj(kjk � 1)

xj(kjk) = xj(kjk � 1) +Kj(k)[~zj(k)]

Pj(kjk) = [I �Kj(k)Hj(k)]Pj(kjk � 1)

It can also be explained as consisting of a low gain filter (for the nearly uniform
motion) and a high gain filter (for the manoeuvring situation) [142].

7.6.1.3 Model probability evaluator

The likelihood of Mj(k) is computed with the filter residuals ~zj(k), the covariance
of the filter residuals S(k)j , and the assumption of a Gaussian distribution. The
likelihood of Mj(k) is given by

�j(k) =
1p

2�jS(k)jexp[�0:5(~zj(k)
T (Sj(k))

�1~zj(k)]

The model probabilities update is

�j(k) =
1

c
�j(k)�cj (7.11)

c =

rX
j=1

�j(k)�cj (7.12)

7.6.1.4 Output mixer

The output mixer combines all the state estimates and covariances from individual
filter outputs as follows:

x̂(kjk) =

NX
j=1

x̂j(kjk)�j(k)

P (kjk) =

NX
j=1

�j(k)fPj(kjk) + [x̂j(kjk)� x̂(kjk)][x̂j(kjk)� x̂(kjk)]T g

The IMM filter is built from a number of different dynamic motion models that de-
scribe different aspects of target motion. For a particular target manoeuvre, the filter
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will automatically choose the ideal mix of models. An IMM filter with constant ve-
locity and mean-jerk models is reported to have the ability to track manoeuvring tar-
gets in spherical coordinates [33]. The mean-jerk model used is a standard constant
acceleration model with time-correlated acceleration errors instead of the standard
‘white’ acceleration errors. Time-correlated acceleration errors means that the accel-
eration modelling error at time k is influenced by the acceleration modelling error at
time k � 1.

It is reported that the performance of the IMM algorithm is not very sensitive to
the choice of the transition probabilities [17]. The choice of transition probabilities
provides, to a certain degree, the trade-off between the peak estimation errors at the
onset of the manoeuvre and the maximum reduction of the estimation errors during
the uniform motion. The IMM algorithm could also be readily combined with the
probabilistic data association (PDA) technique.

However, there are several shortcomings in the IMM approach to multiple targets
tracking. These shortcomings are:

� existence of severe bias if the models do not match the dynamic target ma-
noeuvres, such as unpredicted non-linear manoeuvres.

� heavy computational load which may be critical in real-time applications [144,
8]. This is because in order to operate well, the IMM requires a large number
of filters to cover the different possible manoeuvres and number of targets.

� mainly suitable for constant velocity and constant acceleration.

� the accuracy of IMM is governed by the transition probabilities of the Markov
chain. The tuning of the Markov chain transition matrix, that is, the a priori
information, is then crucial to obtaining the correct ordering of the a posteriori
regime probabilities [12].

� if the observation noise is non-Gaussian, the IMM method degrades. This
degradation is due to the non-optimal Kalman filter used in the IMM and the
miscalculation of the model probabilities [245].

� the weight probabilities perform badly when the measurement noise is high
and the targets move with high manoeuvring acceleration [180].

There are various modifications to improve the IMM algorithm. Some of these
are as follows:

� Auto-tuning interactive multiple models [173]. This method enhances the
IMM algorithm by automatically tuning the process noise covariance value
using the fuzzy and exponential decaying techniques.

� The IMM filter contains correlated acceleration models. In this approach, the
IMM filter has been formulated using a constant velocity and two correlated
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acceleration models. It is claimed that this method provides improved track-
ing performance over an IMM filter containing constant velocity and constant
acceleration models [34].

� The interacting multiple bias model (IMBM) [32]. The IMBM algorithm uti-
lizes the IMM algorithm and the two-stage state estimation. It consists of a
filter for the bias-free portion of the state model, a filter for each bias model 1,
a model probability evaluator for each bias model, an estimate mixer at the in-
put of the bias filters and an estimate combiner at the output of the bias filters.
The flow diagram of an IMBM algorithm with two bias models is given in
Figure 7.5, where x(kjk) is the state estimate based on both models, b j(kjk)
is the bias estimate for the time k based on model j, �j(k) is the likelihood
of model j at time k. The IMBM algorithm is claimed to be able to track
manoeuvring targets.
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Figure 7.5: The IMBM algorithm.

� Selected filter interacting multiple model (SFIMM) [144]. This algorithm is a
modified form of the IMM algorithm. Two additional procedures, namely data
selection and decision procedures, are added to the standard IMM procedure.

1The target acceleration is modelled as a system bias.
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The decision rules are used to choose a specific subset of filters close to the
target acceleration.

At each scan the decision procedure checks the likelihood function or the
weighting factor for each model, and makes a decision as to whether a subset
shift is necessary or not. This information is then passed to the data selec-
tion block, which then activates the required filters. By doing so, only limited
filters are computed in each cycle. Hence, a saving in the computation load
compared with the IMM algorithm.

� Adaptive interacting multiple model (AIMM) [165]. The AIMM algorithm in-
troduces a two-stage Kalman filter to the standard IIMM algorithm. The two-
stage Kalman filter consists of a bias-free filter and a biased filter to estimate
the acceleration value, â. Then using a limited number of filters, accelerations
near to the estimated acceleration are formed. For example, if five filters are
used, then the acceleration for the five filters is as follows:

â; â(1� �1); â(1� �2)

where � is a preselected value. The AIMM algorithm is proposed mainly to
improve the computational efficiency of the standard IMM algorithm.

� Non-linear interactive multiple model (NIMM) [245]. The NIMM algorithm
uses a non-linear filter known as the Masreliez filter [152] in place of the
Kalman filter. The Masreliez filter employs a non-linear score functions as
the correction term in the state estimate equation, while retaining the compu-
tationally appealing structure of the Kalman filter. Using the Masreliez filter
in the IMM, it is claimed that the calculation for the model probabilities is
improved. This results in a non-linear IMM (NIMM) which claims to signifi-
cantly improve the tracking performance, particularly in the glint environment.

However, Wu and Cheng’s method has avoided the convolution operation
and simplified the evaluation of the non-linear score function by applying a
normal expansion for the distribution of the measurement prediction [245].
Daeipour and Bar-Shalom [63] have shown that the use of the IMM with
the extended Kalman filter has a better performance than the non-linear score
function method for target tracking with glint noise.

� Innovation filter IMM adaptive algorithm (IF-IMMA) [180]. This algorithm
proposes to reduce the effect on the weight probabilities of the measurement
noise. The IF-IMMA is a modification of the IMM algorithm. Instead of using
the normal constant velocity and constant acceleration model, it replaces the
model with a Zhou model for tracking manoeuvring targets.

� Parallelization of the IMM algorithm [192]. This approach suggests that, in a
situation with multiple targets, a coarse grained parallelization across IMMs is
a good strategy to reduce the computational burden of the IMM algorithm.
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7.6.2 Comparison between IMM and Kalman filters

7.6.2.1 Scenario

Figure 7.6 depicts a target moving from east to west, then turns south, followed by
a turn to the west again. The target speed was set to be 100m/s, and the two turning
rates to be both 2 deg/s. The true path of the target is shown as a solid line. The sensor
measures the target’s range and the bearing every second. The measurement noise
in range has a standard deviation of 100m, while the bearing noise has a standard
deviation of 2 deg. The measurements are shown as dots. The RMS error of the
measurement noise was 384.27m.

Figure 7.6: Scenario for testing.

7.6.2.2 Filters

The setting of the filters are as follows:

� Kalman Filter - A constant velocity model with acceleration process noise is
used.

� IMM Filter - Two models are used.
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Process noise standard deviation RMS error (m)
1.0 374.35
2.0 234.33
3.0 217.92
4.0 210.51
5.0 207.33
6.0 206.21
7.0 210.62
8.0 212.03

Table 7.1: RMS errors with different process noise values for the Kalman
filter.

Model 1 Model 2
process noise process noise RMS error

standard deviation standard deviation
0.1 2.0 204.96
0.1 3.0 221.35
0.1 4.0 211.52
0.1 5.0 206.52
0.1 6.0 203.51
0.1 7.0 202.39
0.1 8.0 206.04

Table 7.2: RMS errors with different process noise values for the IMM filter
with two models.

– Model 1: Constant velocity with a small acceleration process noise. It is
used to model straight movements.

– Model 2: Constant velocity with a large acceleration process noise. It is
used to model target turning.

7.6.2.3 Results and analysis

The result of the RMS error of the Kalman and IMM filters are shown in table 7.1
and table 7.2 respectively.

From the test results, we see that IMM filter produces a better result than the
Kalman filter in terms of RMS error. This is because when the target is moving
with a constant velocity, the IMM low process noise model becomes dominant, as
its mode probability is higher. Once the target manoeuvres, the IMM high process
noise model takes over. The mode probability of the high process noise model thus
becomes higher. This is shown in Figure 7.7 between time steps 200 and 300.

The IMM filter is also less sensitive to the process noise changes than the Kalman
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filter. This is mainly because of the multiple models used in the IMM filter.

Figures 7.7, 7.8 and 7.9 are generated using IMM filter models with the follow-
ing process noise:

� Model 1 with standard deviation of process noise at 0:1m=s2;

� Model 2 with standard deviation of process noise set at 7:0m=s2.

The Kalman filter used in figures 7.8 and 7.9 is set with Q = 1m=s2.

0 50 100 150 200 250 300 350 400 450 500
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
mode prob. for model 2
mode prob. for model 1

Figure 7.7: Mode probability of two models.

Figure 7.8 depicts the position error vs. time when the Kalman filter and IMM
filter are used. From the graph, it can be seen that the position error of the Kalman
filter is much higher than the IMM filter when target is turning.

7.6.2.4 Summary

In summary, the overall performance of the IMM filter is observed to be better than
that of the Kalman filter. However, the performances of both filters can be improved
with careful tuning of their parameters. In general, the IMM filter with multiple
models have an edge over the Kalman filter, which only depends on a single model.
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Figure 7.8: Position error obtained from Kalman (Q = 1m=s2) and IMM
filters mode.

7.6.3 Comparison between IMM and the generic particle filter

Using the same scenario as in Figure 7.6, the IMM filter and the generic particle
filters are compared. Figure 7.10 and table 7.3 show the results of the RMS error vs
time. Details of the generic particle filter algorithm are in the appendix.

Type of Filter Tuned parameters RMS error
IMM Model 1: 0:1m=s2 193.94

Model 2: 7:0m=s2

PF-Gaussian Noise Deviation: 139 197.48
PF-Cauchy Noise Deviation: 139 209.90

Table 7.3: Results of the generic particle filters and the IMM filter

In this scenario - where the target does not perform highly non-linear behaviour
- the IMM filter is comparatively better than the generic particle filter. Particle filters
also have a much higher computational load due to the need to perform multiple
sampling processes. This may constraint its application for real time processes.
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Figure 7.9: RMS error obtained from Kalman (Q = 1m=s2) and IMM fil-
ters Mode

7.7 Issues Affecting Tracking Systems

This section will highlight some of the issues faced in implementing tracking sys-
tems. The issues covered are:

� Coordinates.

� Gating issues.

7.7.1 Coordinates

Tracking is normally done in Cartesian coordinates. Cartesian coordinates have the
advantage of allowing the use of linear target dynamic models for extrapolation -
meaning the predicting and updating of states.

However, sensors normally obtain measurements in azimuth coordinates or a
combination of range, azimuths and elevation - for example, most radar sensors will
give range and azimuth. A non-linear transformation is required to relate the mea-
surements to the Cartesian state variables. For unbiased non-linear transformations,
reader may refer to [161]. However, we may also leave the measurements in the
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Figure 7.10: RMS error obtained from generic particle filters and IMM filter.

original form and input them through the use of the non-linear measurement form of
the extended Kalman filter.

7.7.2 Gating issues

Gating is a technique used for eliminating unlikely observation-to-track pairings.
A gate is formed about the predicted measurement and all observations that sat-
isfy the gating relationship (falling within the gate) are considered for track updates.
The manner in which the observations are actually chosen to update the track de-
pends on the method of data association. For example the nearest neighbour method,
global nearest neighbour, probabilistic data association method or multiple hypothe-
ses method. These association methods are discussed in Chapter 6.

The possible gating techniques are:

1. Rectangular gates - Simplest gating technique. It is defined as: an observation
(z(k), with elements zi(k)) is said to satisfy the gates of a given track if all
elements, zi, of the residual vector ~z satisfy the relationship:

j ~z j � Kg�r
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where �r =
q
�2o + �2p , �o is the measurement variance and �p is the predic-

tion variance when Kg � 3.

2. Ellipsoidal gates - A gate (G) is defined such that association is allowed if the
following relationship is satisfied by the norm (d2) of the residual vector:

d2 = ~zTS�1~z � G (7.13)

3. Multiple gating concepts. Where the starting gate is relatively big and subse-
quently reduced, such as:

� first gate - large gate, can consider the worst-case target manoeuvre con-
ditions normally 3 times the size of the target maximum speed.

� second gate - small gate, using the maximum speed of the target or the
largest eigenvalue of the covariance matrix size.

After gating is the fusion process. Data or measurement plots that fall within the
gate will be fused into a single plot and updated during the state estimation process.

7.8 Conclusions

The chapter has presented the basic aspects of tracking systems, particularly in the
area of kinematics state estimation. The algorithms used for state estimation were
also discussed. The advantages and disadvantages of the state estimators (filters)
were presented.

A comparison between the IMM filter and Kalman filter was made and showed
that the IMM filter is well known for its good performance in estimating the state
of a moving target. The IMM filter has been in use in most modern tracking sys-
tem. However, for fast computational requirements, such as airborne platforms, the
adapted fixed gain filters are also used, particularly in burnt-in processors. This type
of tracking algorithm is usually embedded or burnt-in in the processor.



This page intentionally left blank



CHAPTER 8

Cooperative Intelligence

8.1 What is Cooperative Intelligence

Cooperative intelligence refers to a network of nodes 1 working jointly to achieve the
desired tasks in the most effective and efficient manner. Each node has the capability
to:

� exchange information with other nodes.

� perform information processing.

� manage its resources.

� team with other nodes to achieve its goals.

Cooperative intelligence has been observed in animals and inserts behaviour. For
examples, ants are able to work cooperatively in carrying heavy objects and wolves
are able to cooperate with each other in hunting for food. Cooperative intelligence
could be seen as consisting of two classes, namely:

� Lower-order cooperative intelligence or commonly known as swarm intelli-
gence. Studies on swarm intelligence attempt to learn from insects, such as
ants and bees, to obtain cooperative intelligent behaviour. These insects may
seem to be primitive, however, by working together, they are able to display
some kind of evolved intelligent behaviour.

1A node may exist in a platform, such as ship, aircraft, land vehicle, mobile and static C2 system,
robot, personal digital assistant (PDA) or directly within the sensor system. Each node has some form
of processing unit to process the data and information. Nodes are sometime also called fusion nodes or
sensor nodes.
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Swarm intelligence is a shift in mindset: from centralised control to
decentralised control and distributed intelligence.

Eric Bonabeau, Icosystem Corp.

� Higher-order cooperative intelligence. Human beings are able to cooperate
with one another to achieve multiple desired tasks or goals.

8.1.1 Characteristics of cooperative intelligence

Some of the key characteristics of cooperative intelligence are:

� Decentralized control. Nodes are not centrally controlled. Each node has its
own ‘brain’ to process information and makes a decision based on its goals or
mission objectives.

� Emergent intelligence. Each node has its own level of intelligence, however,
it is often limited. By working together, a network of nodes will have enough
emergent intelligence to undertake bigger and more complex tasks that an indi-
vidual node may not be able to solve. Note that the term collective intelligence
has also been used for the same type of behaviour.

� Adaptability. The nodes will have to adapt to the dynamic environment. They
do not possess an explicit or complete model of the environment.

� Self-organizing behaviour. Adaptability will also include the characteristic
of organizing itself and with other nodes. Individual nodes may be detached
from the group due to a communication breakdown or by being destroyed.
The remaining nodes can then self-organize to achieve the desired goals. Self-
organizing behaviour includes coalition or dynamic teaming among the nodes.

� Reactive behaviour. Each node will exhibit its own reactive behaviour. Al-
though by working together they have a collective intelligence, individual
nodes will also have their own local reactive behaviour to counter any im-
mediate threat or time-critical response.

This chapter will focus on the discussion of cooperative intelligence in the areas
of cooperative tracking. Section 2 will briefly explain what is cooperative sensing
and tracking. Sections 3 and 4 will further explain some of the techniques used for
cooperative tracking. Section 5 presents some experiments and findings.
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8.2 Cooperative Sensing and Tracking

8.2.1 Network of nodes

Here, we would like to engineer a system of cooperative intelligence within a net-
work of nodes where each of the nodes will have:

� a power source.

� a communication link.

� smart/intelligent algorithms.

� direct links to one or more sensor systems (both homogeneous and heteroge-
neous sensor systems).

� a processor to process the data and information (e.g. handling of data from
other nodes and able to perform fusion processes).

With multiple sources of information, each node will perform a fusion process,
such as classifying and identifying objects, associating and correlating objects, track-
ing, monitoring and deriving events or activities (situation assessment), predicting
and assessing the threat or intention, and last but not least managing its suite of re-
sources (resource management). Each node will also share its information with other
nodes in order to achieve a global picture of the situation under its consideration.

Software agent technology could also be used to improve information processing
in the nodes. For example, software agents’ negotiation techniques could be used for:

� dynamic allocation of the limited resources in the node.

� coalition of nodes for achieving better global goals.

� managing the data and information to be exchanged about the nodes so as to
reduce communication and computing costs.

A network of nodes working cooperatively for sensing and tracking have, but
are not limited to, the following advantages:

� Fault tolerance and robustness: failure of one node does not mean the failure
of the entire network. The network of nodes is still able to sense and track the
desired target.

� Improved situation awareness: networked nodes (indirectly they can also be
seen as a network of sensor systems) can provide better coverage and give dif-
ferent perspectives of information, which results in enhancing situation aware-
ness.
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� Scalability: the number of nodes in the network can easily be scaled up for
wider and improved coverage. This means that other nodes can join the net-
work seamlessly without loading the individual node’s processing capability.

Figure 8.1 shows 4 robots working cooperatively to search and detect the light
source. Each of the robots is a node, with PDA as its processing brain, ah-hoc
network communication mode and sensors connected to its body. The robots worked
cooperatively to perform localization, mapping, tracking and derive awareness of the
environment via its sensors and shared information from other robots to achieve the
desired tasks in a shorter time.

Figure 8.1: Cooperative robots searching for the light source.

Networked nodes naturally are connected in a decentralized architecture. Hence,
in tracking, the decentralized tracking algorithms, which enable some form of scal-
ability and methods of improving tracking through sharing of data, will have to be
considered.

8.2.2 Decentralized tracking

There are 3 approaches for decentralized target tracking. These are:
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� Measurement fusion. The state estimation process uses the combination of
sensor measurements, or observations directly from sensors, to form target
tracks.

� Information fusion. The state estimation process uses the combination of in-
formation, where information is data converted from sensor measurements, to
form target tracks.

� Track or state vector fusion. The state estimation process uses a combina-
tion of individual states, estimated on the same target from each of the sensor
systems or nodes, to form target tracks.

We will attempt to discuss in greater detail each of these approaches in the next
two sections. However, before we proceed further, we will first standardize some
notations and equations that we will be using throughout the chapter.

The standard linear process equation (A.20) describing the target motion at time
k is given by

x(k + 1) = F (k)x(k) +G(k)u(k) + w(k): (8.1)

For simplicity, we shall consider the following process equation that omits the
input gain:

x(k + 1) = F (k)x(k) + w(k) (8.2)

In addition, the measurement equation is given by

z(k + 1) = H(k + 1)x(k + 1) + v(k + 1) (8.3)

where z(k) is the measurement vector, H(k) is the measurement model or observa-
tion matrix and v(k) is the measurement noise.

Note the properties of w(k) and v(k) are:

E[w(k)] = 0

E[v(k)] = 0

E[w(k)wT (j)] = Q(k)Ækj

E[v(k)vT (j)] = R(k)Ækj

E[w(k)vT (j)] = 0

8.3 Measurement and Information Fusion

Theoretically, measurement and information fusion are the same concept. A Kalman
filter (KF) is used by both approaches. The Kalman filter is also one of the important
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components in tracking algorithms for both centralized and decentralized architec-
tures. Hence, we will start by describing the KF algorithm.

The KF gives the minimum mean square error (MMSE) state estimate if we were
to assume a Gaussian distribution for the initial error in the state vector and the noise
in the system [18].

At time k, the estimate of the state vector x(k) based on observations up to time
j is

x̂(kjj) � E[x(k)jz(1); : : : ; z(j)] k � j (8.4)

with the mean squared error (MSE) of the estimate as

P (kjj) � E[(x(k) � x̂(kjj))(x(k) � x̂(kjj))T jz(1); : : : ; z(j)]: (8.5)

For a system described by equations (8.2) and (8.3), the KF provides a two stage
(prediction and update) recursive solution for the estimate x̂(k+1jk+1) of the state
x(k + 1), in terms of the estimate x̂(kjk) and the new observation z(k + 1).

Prediction:

x̂(k + 1jk) = F (k)x̂(kjk) (8.6)

P (k + 1jk) = F (k)P (kjk)F T (k) +Q(k) (8.7)

Update:

x̂(k + 1jk + 1) = x̂(k + 1jk)
+ K(k + 1)[z(k + 1)�H(k + 1)x̂(k + 1jk)] (8.8)

P�1(k + 1jk + 1) = P�1(k + 1jk) +HT (k + 1)R�1(k + 1)H(k + 1)(8.9)

where

K(k + 1) = P (k + 1jk + 1)HT (k + 1)R�1(k + 1) (8.10)

is the Kalman gain matrix.

Note that equation (8.9) gives the information form of the variance. This set of
KF equations is similar to the one for the KF used in centralized tracking algorithms.

8.3.1 Decentralized Kalman filter

The idea behind the decentralized Kalman Filter is to compute a partial state estimate
at each of the nodes in the system, then integrate the various state estimates together
to form a global state estimate, via communication with the other nodes. Consider a
system with m sensors. The measurement vector

z(k) = [zT1 (k); : : : ; z
T
m(k)]

T

is partitioned into m subvectors, corresponding to the measurements of each in-
dividual sensor, each with dimension mi. Similarly, the measurement matrix and
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measurement noise vectors are partitioned as follows:

H(k) = [HT
1 (k); : : : ; H

T
m(k)]

T

v(k) = [vT1 (k); : : : ; v
T
m(k)]

T ;

with the assumption that the partitions are uncorrelated, that is

E[v(k)vT (k)] = blockdiagfR1; : : : ; Rm(k)g:

Decentralization of the KF algorithm is equivalent to a duplicate of the KF algo-
rithm being placed at each of the nodes (or sensor nodes). Thus, the local estimates
from the individual nodes in the decentralized KF algorithm are equivalent to the
results obtained from a centralized algorithm.

Thus, equations (8.2) and (8.3) become respectively:

xi(k + 1) = Fi(k)xi(k) + wi(k) (8.11)

zi(k + 1) = Hi(k + 1)xi(k + 1) + vi(k + 1); (8.12)

where Fi(k) is the local system model and the xi(k)’s are states associated with the
system.

Then, the prediction and update equations are:

Prediction:

x̂i(k + 1jk) = Fi(k)x̂i(kjk) (8.13)

Pi(k + 1jk) = Fi(k)Pi(kjk)F T
i (k) +Qi(k) (8.14)

Update:

~xi(k + 1jk + 1) = x̂i(k + 1jk)
+ Ki(k + 1)[zi(k + 1)�Hi(k + 1)x̂i(k + 1jk)] (8.15)

~P�1
i (k + 1jk + 1)=P�1

i (k + 1jk) +HT
i (k + 1)R�1

i (k + 1)Hi(k + 1)(8.16)

where

Ki(k + 1) = ~Pi(k + 1jk + 1)HT
i (k + 1)R�1

i (k + 1) (8.17)

with the tilde denoting a partial estimate based only on the observation of the ith
sensor node.

Thus, each of the nodes makes an observation and computes a partial (local) state
estimate according to equations (8.13 - 8.17). Then, how do we achieve a global state
estimate?

8.3.1.1 Formulation of a global state estimate

As each node computes the partial estimate ~xi(k + 1jk + 1), this information is
communicated to the other nodes and it also integrates the information that it receives
[73].
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There are two parts to the decentralized Kalman filter - the integration of the
variance matrix and the state vector.

Through the partition of the observation model and the observation noise, we
have

HT (k)R�1(k)H(k) =

mX
i=1

HT
i (k)R

�1
i (k)Hi(k): (8.18)

Rearranging equations (8.9) and (8.16) and substituting the results into (8.18),
we obtain the integration equation

P�1(k + 1jk + 1) = P�1(k + 1jk) +
mX
j=1

[ ~P�1
j (k + 1jk + 1)

� P�1
j (k + 1jk)] (8.19)

which is placed at the individual nodes to obtain

P�1
i (k + 1jk + 1) = P�1

i (k + 1jk) +
mX
j=1

[ ~P�1
j (k + 1jk + 1)

� P�1
j (k + 1jk)]: (8.20)

Similarly, through the partition of the observation vector and model, we have

HT (k)R�1(k)z(k) =

mX
i=1

HT
i (k)R

�1
i (k)zi(k): (8.21)

Next, we premultiply the rearranged version of (8.9) by P (k+1jk+1) and substitute
the result into equation (8.10) to obtain

I �K(k + 1)H(k + 1) = P (k + 1jk + 1)P�1(k + 1jk): (8.22)

We also have

I �Ki(k + 1)Hi(k + 1) = ~Pi(k + 1jk + 1)P�1
i (k + 1jk); (8.23)

which is obtained by performing similar operations, as above, on equations (8.16)
and (8.17).

Our next step includes premultiply equation (8.8) (respectively equation (8.15))
by P�1(k + 1jk + 1) (respectively ~Pi(k + 1jk + 1)) and applying equation (8.10)
(respectively equation (8.17)) to obtain the following pair of equations:

HT (k + 1)R�1(k + 1)z(k + 1) = P�1(k + 1jk + 1)x̂(k + 1jk + 1)

� P�1(k + 1jk)x̂(k + 1jk): (8.24)

HT
i (k + 1)R�1

i (k + 1)zi(k + 1) = ~P�1
i (k + 1jk + 1)~xi(k + 1jk + 1)

� P�1
i (k + 1jk)~xi(k + 1jk): (8.25)
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These two equations are next substituted into equation (8.21) to obtain the state
integration equation

x̂(k + 1jk + 1) = P (k + 1jk + 1)[P�1(k + 1jk)x̂(k + 1jk)

+

mX
j=1

f ~P�1
j (k + 1jk + 1)~xj(k + 1jk + 1)

� P�1
j (k + 1jk)x̂j(k + 1jk)g] (8.26)

which is placed at each node in the decentralized network to obtain

x̂i(k + 1jk + 1) = Pi(k + 1jk + 1)[P�1
i (k + 1jk)x̂i(k + 1jk)

+

mX
j=1

f ~P�1
j (k + 1jk + 1)~xj(k + 1jk + 1)

� P�1
j (k + 1jk)x̂j(k + 1jk)g] (8.27)

Note that the state error information,

~P�1
j (k + 1jk + 1)~xj(k + 1jk + 1)� P�1

j (k + 1jk)x̂j(k + 1jk)
and the variance error information,

~P�1
j (k + 1jk + 1)� P�1

j (k + 1jk)
are transmitted by each node to the other nodes.

8.3.2 Information filter

The information version of the Kalman filter (which is mathematically equivalent to
the Kalman filter) allows for the decentralization of the standard continuous estima-
tion and control functions [71] [178].

Given a set of multiple sensor observations,

zi(k) = Hi(k)x(k) + vi(k); i = 1; : : : ; N (8.28)

the global state estimate cannot be obtained by simply summing the weighted inno-
vations that are communicated from other nodes, that is,

x̂(kjk) 6= x̂(kjk � 1) +
NX
i=1

Ki(k)[zi(k)�Hi(k)x̂(kjk � 1)]; (8.29)

This is because of the correlation of the innovation z i(k) �Hi(k)x̂(kjk � 1), gen-
erated from each sensor as common information, is shared through the prediction
x̂(kjk � 1). However, expressing in the information form, due to the uncorrelation
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of each sensor’s information variables i i(k) = HT
i (k)R

�1(k)z(k), estimates can be
constructed from linear combinations of the observation information

ŷ(kjk) = ŷ(kjk � 1) +

NX
i=1

ii(k): (8.30)

Note that i(k) is the new information about x(k) contained in z(k) with its as-
sociated Fisher information matrix I(k), where i(k) and I(k) are defined as follows:

i(k) = HT (k)R�1(k)z(k) (8.31)

I(k) = HT (k)R�1(k)H(k) (8.32)

Rewriting the state estimate and covariance in terms of the new variables, we
have

ŷ(ijj) = P�1(ijj)x̂(ijj) (8.33)

Y (ijj) = P�1(ijj): (8.34)

Hence, the information filter can be summarized as follows [72]:

Prediction:

Y �1(kjk � 1) = F (k)Y �1(k � 1jk � 1)F (k)T +Q(k) (8.35)

ŷ(kjk � 1) = Y (kjk � 1)F (k)Y �1(k � 1jk � 1)ŷ(k � 1jk � 1)(8.36)

Estimate:

ŷ(kjk) = ŷ(kjk � 1) + i(k) (8.37)

Y (kjk) = Y (kjk � 1) + I(k): (8.38)

Finally, the estimated state is obtained as

x̂(kjk) = Y �1(kjk)ŷ(kjk): (8.39)

We now make a brief deviation to discuss the advantages and disadvantages of
the information filter (IF).
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Advantages Disadvantages
� The equations (8.37) and (8.38) of the IF
are computationally simpler as oppposed
to the update equations of the KF (Equa-
tions (8.8) and (8.9));

� Loss of ‘transparency’ of
the representation as it is
more difficult to interpret the
physical significance of in-
formation;

� Using the information matrix Y , an es-
timation process may start with no a pri-
ori information, that is, Y0 is a zero matrix.
Such a condition will have no bias towards
the a priori estimate. (Note that this is not
possible if the covariance matrixP was ini-
tialized as a zero matrix.);

� Loss of physical signifi-
cance of the associated state
vector components. This
is because the coefficients
of the linear combinations
change with the state of in-
formation/uncertainty in the
estimates.

� The observational update of Y is more
robust against roundoff errors.

In order to decentralize the information filter, as with the Kalman filter, the cen-
tral IF algorithm needs to be reproduced at each node and the results simplified. Lo-
cal estimates are first generated at each node by fusing locally available observation
information ii(k) with locally available prior information ŷ i(kjk�1), to yield a local
information estimate ~yi(kjk). The difference between this local estimate and predic-
tion (corresponding to new information gained) is then transmitted to other nodes in
the network. If the network is fully connected, each of the other nodes receives the
new information. The communicated information is then integrated with the local
information. As with the decentralized KF algorithms, the local estimates obtained
using the IF algorithms are exactly the same as if the data fusion problem has been
solved on a single central processor using the conventional information filter.

8.3.2.1 Implementation of the decentralized information filter equation

The derivation of the decentralized information filter equations will not be discussed
in this book 2; instead, we will just provide a summary of the steps required to
implement the information filter algorithm.

At each node i, the global information state vector is obtained as

ŷi(kjk) = ŷi(kjk � 1) +
X
j

Hj(k)
TR�1

j (k)z0j(k); (8.40)

where z0j(k) = zj(k) for the linear filter. For the non-linear filter, the expression for
z is

z0j(k) = zj(k)� (hj [k; x̂j(kjk � 1)]�rxhj [k; x̂j(kjk � 1)]x̂j(kjk � 1)): (8.41)

2Interested readers may refer to [73].
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The information matrix is given by

P�1
i (kjk) = P�1

i (kjk � 1) +
X
j

Hj(k)
TR�1

j (k)Hj(k): (8.42)

The partial information state vector is given by

~yi(kjk) = ŷi(kjk � 1) +Hi(k)
TR�1

i (k)z0i(k); (8.43)

and the partial information matrix by

~Pi(kjk)�1 = P�1
i (kjk � 1) +Hi(k)

TR�1
i (k)Hi(k): (8.44)

The prediction equations are

Pi(kjk � 1) = Fi(k)Pi(k � 1jk � 1)Fi(k)
T +Qi(k); (8.45)

and

ŷi(kjk � 1) = P�1
i (kjk � 1)Fi(k)Pi(k � 1jk � 1)ŷi(k � 1jk � 1): (8.46)

Finally, we have the partial state estimate

~xi(kjk) = ~Pi(kjk)~yi(kjk); (8.47)

and the global estimate

x̂i(kjk) = Pi(kjk)ŷi(kjk): (8.48)

8.3.3 Measurement Fusion

The measurement fusion algorithm is suitable for the centralized architecture. It is
also possible to be used in a decentralized architecture when network transmission
costs can be reduced by other technologies. In the measurement fusion algorithm,
the sensors’ measurements are fused to obtain a combined measurement, and then to
estimate the target state by the combined measurement. Here, we use Kalman filter
to illustrate the measurement fusion algorithm.

The tracking is modeled by the following transition equation and measurement
equation:

x(k + 1) = F (k)x(k) + w(k) (8.49)

zi(k + 1) = Hi(k + 1)x(k + 1) + vi(k + 1) (8.50)

where i is the sensor index, v(k) andwi(k) are white Gaussian noise with covariance
Q and Ri respectively.
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Assume there are N independent measurements from N sensors associated to
the same target. The combined measurement z and its error covariance R are given
by:

z(k) = R(k)

NX
i=1

R�1
i (k)zi(k) (8.51)

R(k) = [

NX
i=1

R�1
i (k)]�1 (8.52)

and the combined measurement matrix H is:

H(k) = R(k)

NX
i=1

R�1
i (k)Hi(k) (8.53)

The Kalman filter prediction and estimation by the combined measurement are
shown as follows:

Prediction:
x̂(k + 1jk) = F (k)x̂(kjk) (8.54)

P (k + 1jk) = F (k)P (kjk)F T (k) +Q(k) (8.55)

Innovation covariance:

S(k + 1) = H(k + 1)P (k + 1jk)HT (k + 1)
+R(k + 1)

(8.56)

Kalman gain:

W (k + 1) = P (k + 1jk)HT (k + 1)S(k + 1)�1 (8.57)

Estimation:

x̂(k + 1jk + 1) = x̂(k + 1jk)+
W (k + 1)(z(k + 1)
�H(k + 1)x̂(k + 1jk))

(8.58)

P (k + 1jk + 1) = [I �W (k + 1)H(k + 1)]
P (k + 1jk) (8.59)

8.4 Track or State Vector Fusion

The track fusion approach combines tracks, where a track is the state vector of a
target. Hence, track fusion is also commonly known as state vector fusion. In the
following subsections, we will provide descriptions of the main approaches to track
fusion and their underlying assumptions. The primary methods are [56]:
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� Convex combination (CC).

� Covariance intersection (CI).

� Bar-Shalom and Campo’s combination (BC).

� Information de-correlation.

� Best linear unbiased estimate (BLUE) or also known as linear minimum vari-
ance estimate.

We consider the state to be estimated as a finite dimensional random vector x with
mean �x and covariance �P .

8.4.1 Convex combination

The convex combination (CC) method assumes that the cross covariance between
two state estimates, x̂i and x̂j , can be ignored. The equations to combine two state
vectors and its covariance are as follows:

Error Covariance: P = (P �1
i + P�1

j )�1 (8.60)

State Estimate: x̂ = P (P�1
i x̂i + P�1

j x̂j) (8.61)

The general equations for n state estimates are:

Error Covariance: P = (

nX
k=1

P�1
k )�1 (8.62)

State Estimate: x̂ = P (
nX

k=1

P�1
k x̂k) (8.63)

The convex combination method is simple to implement, hence it is also com-
monly known as simple convex combination. However, this method is optimal only
if the assumption is true, meaning the cross covariance P ij = 0 and Rij = 0; else
the method is sub-optimal.

If the same Kalman filter is applied to all the local tracks in track fusion, and all
local kalman filters use the same process noise covarianceQ and the same measure-
ment noise covarianceR, then, this implementation, will result in all the local tracks
to generate the same state error covariance P , after the Kalman filter is stable. This
means that a set of individual tracks with identical error covariance are going to be
fused together in track fusion. The combined state vector becomes the average of all
the individual state vectors. This result is that good and bad tracks (based on track
quality) make an equal contribution to the combined track. Thus, it is necessary to
develop a track selection algorithm to eliminate tracks with poor track quality.
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The track quality can be computed based on the normalized distance function
[111]:

d2(k + 1) = vT (k + 1)S(k + 1)�1v(k + 1) (8.64)

where the measurement residual v(k + 1) is:

v(k + 1) = z(k + 1)�H(k + 1)F (k)x̂(kjk) (8.65)

and the innovation covariance S(k + 1) is:

S(k + 1) = H(k + 1)P (k + 1jk)HT (k + 1) +R(k) (8.66)

Then, the track quality U(k + 1) is computed by:

U(k + 1) = �U(k) + (1� �)d2(k + 1) (8.67)

where � is the weight on the history. � can be chosen from 0 to 1. The value of
U represents the track quality. The smaller the U, the better the quality.

Next step is to eliminate those tracks whose qualities are relatively poor. The
smallest Umin (the best quality) is selected among the individual tracks, and the
relative quality Ai of the track i is computed by:

Ai(k + 1) =
Ui(k + 1)

Umin(k + 1)
(8.68)

Only tracks that meet the following condition are selected to fuse:

Ai(k + 1) < Ta (8.69)

where Ta is the threshold. Ta is a number greater than 1.

8.4.2 Covariance intersection

The covariance intersection (CI) algorithm can be viewed as a weighted form of
convex combination in a state estimation. It is suitable for track fusion when the
tracks have an unknown correlation. The CI algorithm consists of the following:

Error Covariance: P = [!P �1
i + (1� !)P�1

j ]�1 (8.70)

State Estimate:x̂ = P [!P�1
i x̂i + (1� !)P�1

j x̂j ] (8.71)

where 0 � ! � 1.

The parameter ! represents the weight that is assigned to the estimates x̂ i. It is
often chosen such that the determinant or trace of P is minimal. Since the trace of
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the covariance matrix P provides a scalar measure of the estimation uncertainty of x̂,
tr(Pj)=tr(Pi)! 0 implies ! ! 0. When Pi = Pj , the parameter ! is independent
of P , the ! can be chosen as 0.5 [179].

There is an alternative method to find the !. If we assume that the performance
of the sensor improves when the target is nearer to the sensor, then one method for
computing the! is the relationship between target and sensor distance. This is shown
as follows:

!i = dj=(di + dj) (8.72)

!j = di=(di + dj) (8.73)

where di is the distance from the target to sensor i and dj is the distance from the
target to the sensor j.

In order to extend the CI algorithm to the fusion of an arbitrary n state estimates,
where n > 2, we can either recursively apply equations (8.70) and (8.71) to the
estimates or apply the following directly:

Error Covariance: P = [
nX
i=1

!iP
�1
i ]�1 (8.74)

State Estimate: x̂ = P [

nX
i=1

!iP
�1
i x̂i] (8.75)

where
Pn

i=1 !i = 1. The CI method is simple to implement if the ! can be com-
puted.

8.4.3 Best linear unbiased estimate

The best linear unbiased estimate (BLUE) is given by:

Error Covariance: P = �P � VxẑV
�1
ẑẑ V

T
xẑ (8.76)

State Estimate:x̂ = �x+W1(x̂i � �x) +W2(x̂j � �x) (8.77)

where

ẑ =
�
x̂T1 x̂T2

�
�
W1 W2

�
= VxẑV

�1
ẑẑ

Vxẑ = covariance betwen x and ẑ

Vẑẑ = covariance of ẑ:

8.4.4 Bar-Shalom and Campo combination

Bar-Shalom and Campo combination method is a special case of BLUE. It combines
the filtered state vectors (derived from sensors’ measurements) from other nodes in
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order to form a new estimate. This method is based on the track correlation on the
same process noise [13]. The multiple tracks can be combined as follows [15]:

Error Covariance:P =Pi � (Pi � Pij)(Pi + Pj � Pij � Pji)
�1(Pi � Pji) (8.78)

State Estimate:x̂= x̂i + (Pi � Pij)(Pi + Pj � Pij � Pji)
�1(x̂j � x̂i) (8.79)

where the cross covariances Pij is given by

Pij(kjk) = [I �Ki(k)Hi(k)][F (k � 1)Pij(k � 1jk � 1)F T (k � 1) (8.80)

+Q(k � 1)][I �Kj(k)Hj(k)]
T

Let us consider fusion of estimates from N sensors [15]. We denote the state
estimates and error covariance from sensor i respectively as x̂ i and Pi and the cross
covariance between sensors i and j as Pij . The state estimate and error covariance
are thus

Error Covariance: P = (ITP�1
I)�1 (8.81)

State Estimate: x̂ = (ITP�1
I)�1ITP�1

X̂ (8.82)

where
I : n � n identity matrix, with n the length of each state

vector;
I : [I; I; : : : ; I ]T (Nn� n matrix)
X̂ : [x̂1; x̂2 : : : ; x̂N ]

T .
P : Nn�Nn covariance matrix with blocks

P =

2
6664

P11 P12 : : : P1N
P21 P22 : : : P2N

: : : : : :
. . . : : :

PN1 PN2 : : : PNN

3
7775

.

8.4.5 Information de-correlation

Assuming that Rij = 0 but �P�1 6= 0, the error covariance and the state estimate
obtained from the fusion of two state estimates are given respectively by

Error Covariance: P = (P �1
i � �P�1 + P�1

j )�1 (8.83)

State Estimate: x̂ = P (P�1
i x̂i � �P�1�x+ P�1

j x̂j) (8.84)

where �x is the common prior information shared by the estimates, if x̂ i and x̂j are
any two arbitrary estimates that are to be fused.
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Note that this method can be extended to arbitrary fusion architectures if the
communication history is known and correlation in the estimation errors is due to
prior information.

8.5 Experiments on Decentralized Tracking

This section describes the experiment to test the decentralized tracking algorithms in
a network of nodes. The experiment is carried out with the objective of comparing
the various decentralized tracking algorithms’ performance in a network of nodes.

8.5.1 Target and sensor modelling

The target is generated using the 2-D constant velocity model, and the measurements
in range and azimuth are converted to Cartesian coordinates unbiased using [161]:

xm = ��1b rmcosbm (8.85)

ym = ��1b rmsinbm (8.86)

�b = e��
2
b=2 (8.87)

where �b is the bias compensation factor, rm is the measured range, bm is the mea-
sured azimuth or bearing, and �2b is the error variance of the measured azimuth,
which is set to 4 in these experiments. .

The state vector x in the simulation is defined as [x; y; _x; _y]T , and measurement
vector z is [x; y]T . The state transition equation and the measurement equation are
given by:

x(k + 1) =

2
664

1 0 T 0
0 1 0 T
0 0 1 0
0 0 0 1

3
775x(k) +

2
664
T 2=2 0
0 T 2=2
T 0
0 T

3
775 a(k) (8.88)

z(k + 1) =

�
1 0 0 0
0 1 0 0

�
x(k + 1) + v(k + 1) (8.89)

where a(k) is [�x; �y]T at time k. It is the process noise used to handle uncertain
acceleration in the constant velocity transition model. In our simulation, a(k) is set
to [10; 10]T . w(k) is the measurement noise, and its covariance R is set to 160000.
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8.5.2 Scenario and simulation test

The target flight profile and the nodes placement for the experiment are shown on
Figure 8.2. The target moves from northwest to the southeast, and then makes a right
turn, and moves from north to south, and finally moves from northwest to southeast
again after a left turn. The target speed is 100m/s, and turning rate is 5 o/s. The
radar measurement noises are simulated by white Gaussian distribution with standard
deviation of 100m and 2o for range and azimuth, respectively.
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Figure 8.2: Target flight profile and the nodes placement for the experiment.

Four simulation tests were carried out. These tests are:

1) Two nodes sharing data, namely node N1 and N8.
2) Four nodes sharing data, namely node N1, N3, N6 and N8.
3) Six nodes sharing data, namely N1, N2, N3, N6, N7 and N8.
4) Eight nodes sharing data, namely N1, N2, N3, N4, N5, N6, N7 and N8.

8.5.3 Experiment results

Table 8.1 shows the RMS position errors for five decentralized tracking algorithms
for 100 runs. Figures 8.3, 8.4, 8.5 and 8.6 show the RMS position errors versus time.
It is quite obvious that the sharing of data among the nodes for the combined tracking
gives less RMS errors compared to an individual node tracker.
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Node Algorithm RMS error Noise
(m) reduction(%)

2 nodes - 654.78 Noise
CC 193.92 70%
BC 193.92 70%
CI 122.95 81%
IF 202.55 69%

MF 202.30 69%
4 nodes - 660.93 Noise

CC 147.08 78%
BC 147.08 78%
CI 106.63 84%
IF 157.75 76%

MF 157.80 76%
6 nodes - 623.32 Noise

CC 119.64 81%
BC 119.64 81%
CI 87.38 86%
IF 128.06 79%

MF 128.24 79%
8 nodes - 605.45 Noise

CC 105.57 83%
BC 105.57 83%
CI 82.79 86%
IF 111.51 82%

MF 111.52 82%

Table 8.1: Comparison of decentralized tracking algorithms
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Figure 8.3: Position error vs time in two nodes.
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Figure 8.4: RMS error vs time in 4 nodes.
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Figure 8.5: RMS error vs time in 6 nodes.
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Figure 8.6: RMS error vs time in 8 nodes.
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Node Track RMS error Noise
selection (m) reduction(%)
(Yes/No)

2 nodes - 654.87 Noise
No 193.92 70%
Yes 141.99 78%

4 nodes - 660.93 Noise
No 147.08 78%
Yes 122.86 81%

6 nodes - 623.32 Noise
No 119.64 81%
Yes 101.01 84%

8 nodes - 605.45 Noise
No 105.57 83%
Yes 97.65 84%

Table 8.2: Track selection method test result

We also test our track selection method on the simple convex combination algo-
rithm for 100 runs. The test results are shown on Table 8.2. We can see that the RMS
position errors are further reduced by the track selection algorithm.

The experiment shows that the network of nodes can improve the tracking per-
formance using decentralized tracking algorithms. Use of information from other
nodes helps to improve the tracking performance compared with a node that only
uses its own local sensor information. However, the RMS error cannot be reduced
infinitely by increacing the number of nodes. The saturating state is not investigated
in our simulation. The measurement and information fusion performance results are
about the same. The covariance intersection algorithm has less RMS error when rea-
sonable ! values are chosen. The ! values are approximated, based on the distance
of the sensor to the target.

The issue of selecting tracks for combination, presents a track selection method
based on the track quality. Simulation results show the method could further reduce
the RMS error.

8.6 Summary

This chapter briefly introduces the concepts of cooperative intelligence. The uses of
cooperative intelligence in decentralized tracking were discussed in detail. Various
decentralized state estimation fusion algorithms were also presented. A number of
these algorithms are currently still undergoing testing and verification with regard to
their usefulness in decentralized fusion. The investigations include:
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� Bandwidth. How much reduction in bandwidth or amount of communication
messages needs to be sent across the node to achieve good track fusion.

� Computational complexity. A node may be a small electronic gadget on board
a moving platform and hence has limited processing power due to space and
battery constraints.

� Selective fusion. This concern issues such as when to fuse and when not to
fuse, to obtain the best track accuracy.



CHAPTER 9

Sensor Management and
Control

9.1 Introduction

Sensor management is an important area of technology for modern tactical sensor
systems and multisensor fusion systems. Sensor management and controlling of
sensors are discussed in [43, 67, 100, 156, 177, 174, 175, 176, 191] and are also
considered as part of the multisensor fusion process.

The task of sensor management work is challenging due to [169, 156]:

� Insufficient resources.

� Limited sensor capabilities.

� Highly dynamic environment.

� Varied sensor capabilities and performance.

� Limited processing capabilities.

� Unplanned sensor failures.

� Data and information fusion requirement.

In [216, 187], the authors highlighted the need for the pilot to be occupied with
other activities and leave the control of sensors to a machine. Thus, the aircraft
must have a sensor manager that is able to select, prioritize, specify, distribute and
schedule tasks for the sensor suites mounted in the flying platform. In addition to
this scenario, we also see many other examples, such as sensors on land vehicle [61]
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or multi-site sensor systems, where there is need for a sensor management system
(SMS) to aid the complete operation of the sensors.

We view the SMS working hand in hand with the data and information fusion
process and the sensor systems (or the generic term sensing sources). The following
diagram shows the complete closed-loop sensing system framework (see Figure 9.1).

Heterogeneous
Sensing Sources

Source 1

Source 2

Source n

Redeployment
(Mobile Sources)

Sensor
Management

Data & Information
Fusion

Multiple Sensing Sources

Operator / User
Interaction

Display

Homogeneous /

(Man Machine Interface)

Tasking / Control / Cue

Update

Request

Figure 9.1: A closed-loop sensing system framework.

The goal of SMS can be defined as to manage, coordinate and integrate the sen-
sor usage to accomplish specific and often dynamic mission objectives. The word
‘manage’ gives a sense of control over the sensors, ‘coordinate’ brings out the effi-
cient use of the sensors and ‘integrate’ brings together all the sensors into one family
or combining all the sensor systems. The ultimate goals of the SMS are to optimize
the overall performance of the fusion systems. This includes the tracking system [30]
and the classification/identification system. Examples of mission objectives are:

� to identify a low flying target in area A.

� to track a target in area B.

The mission objectives could be predefined or entered dynamically in real time. In
fulfilling these goals, the sensor management in effect will help to improve the pro-
cess of data and information fusion.

The basic of the sensor manager’s job [60, 167] is to ‘select the right sensor to
perform the right service on the right object at the right time’. In other words, it
seeks to answer the following questions [67]:
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� What sensor or what group of sensors?

� Which service or which mode or task?

� Where to point or how to control the sensor?

� When to start?

While it is true that sensor management was borne from the task of performing
resource allocation and scheduling of tasks, with the current advances in sensor tech-
nology, its role and function have expanded. We can classify its role and function in
a more systematic and well-defined structure.

The chapter is organized as follows. Section 2 discusses the roles and function of
sensor management in a multi-level approach. Section 3 presents the sensor manage-
ment techniques. Section 4 discusses the sensor management in the control aspect.
Section 5 demonstrates sensor management using a fuzzy controller and a cueing
process. Section 6 briefly introduces the use of software agents for decentralized
sensor management. We conclude at section 7.

9.2 Multi-level Sensor Management Based on Func-
tionality

The sensor management can be classified based on its functionality [191, 30]. Most
of the discussions on sensor management have been centred on the architectural
design such as centralized, decentralized and hierarchical (micro and macro) design
[227]. However, the discussion on this design can be further improved or better
understood if we can breakdown the different levels of sensor management based on
functionality. As in the data and information fusion process, sensor management can
be classified into the following 3 levels:

� Level 1 - This is the lowest level of work in sensor management involving indi-
vidual control of each sensor, such as direction, pointing, change in frequency
and power level. For example, in a directed radar where the tracking of the
target can be guided by a SMS. The SMS is then a controller to the sensor
system. Such SMS can be built closely coupled with the sensor system and
the fusion process. The goal of this SMS controller is to reduce the tracking
error, based on the fusion input. We will discuss this in greater detail in the
subsequent section.

� Level 2 - This is the medium level sensor management. At this level the SMS
focuses more on the sensor tasks and different modes of the sensor with re-
spect to the operational needs. SMS will work out the method to prioritize the
tasks and determine when and how a mode should be activated. Besides these,
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the SMS can also look at some basic functions of sensor to sensor switching.
Hence, at this stage we look at:

– Sensor task scheduling.

– Sensors cueing (sensor handing over, target acquisition by another sensor
aiding).

– Sensor modes/functions (sensor’s own modes changing process).

� Level 3 - This can be seen as the higher-level of sensor management. Each
sensor can only detect a limited amount of information. However, the sensor
manager can direct several sensors in an integrated fashion or sensor mix to
supply information to the fusion process. The total information will provide
greater content than the information from a single sensor. Examples of the
tasks at this level are:

– Dynamic sensor placement or deployment (e.g. to provide good cover-
age).

– Effective/optimal sensor mix (e.g. to minimize the emission).

Sensors can be placed on a moving platform, such as ground vehicle or aircraft.
A SMS can coordinate, manage or suggest positions for the sensor and its
platform to best view the target of interest, provide better coverage space for
detection and avoid being seen. The management of sensors will take into
account the operating environment, such as the terrain.

Sensor low level control

(e.g. power, frequency and 

direction management)

Sensor 

Sensor to sensor interaction/cooperation

Sensor high level process

medium level control
(e.g. sensor modes management)

Level 3

Level 2

Level 1

Figure 9.2: Sensor management levels based on functionality.

Figure 9.2 shows the concept of the various sensor management levels. We may
not have exhausted all possible tasks within each level. Note that the discussion of
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the sensor management levels are intended only for better understanding and conve-
nient categorization of the SMS’s functionality. It is not intended as a prescription
for designing a system.

Figure 9.3 shows a general breakdown of the various sensor management func-
tional modules.
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Figure 9.3: Sensor management functional modules.

9.3 Sensor Management Techniques

A variety of sensor management techniques have been proposed or applied through
the last decade, where researchers and engineers tried to seek better ways of solving
the illusive sensor management work. However, the implementation of sensor man-
agement techniques is viewed by most researchers as solving either, if not both, of
the following problems:

� Decision-making.

� Scheduling.

Decision-making techniques for SMS aim at answering the question: Which sensor
tasks are the most important to schedule or carry out, that is, to prioritize the tasks.
On the other hand, scheduling techniques are used to generate a list or sequence
of tasks to be assigned to the sensors, placing emphasis on the time line of each
sensor. Note that the resource allocation techniques such as assignment methods and
deployment strategies are also part of sensor management process. However, these
techniques are not discussed in this chapter.
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Figure 9.4 classifies the various techniques used for sensor management. In each
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Figure 9.4: Sensor management techniques.

of the following two subsections, we will present and discuss the main ideas of the
techniques described and proposed in the published literature.

9.3.1 Scheduling techniques

In [191], two general approaches for scheduling sensor tasks are discussed. Tasks
are described as time critical ‘hard deadline tasks’ (tasks that are of value only if
performed within a small window of opportunity), ‘fluid deadline tasks’ that are not
time critical but have weak constraints, and also tasks with different priority. An
example of each of the above tasks is presented below:

� Brick packing approach. The basic idea is to break the scheduling time line, T ,
into smaller tasking intervals �T . This time interval is then packed according
to some measure of optimality that involves the solving of epoch goals by
exhaustive tree searching. It is applied to find the schedule that contains the
most tasks or by a sub-optimal approach that uses a heuristically guided depth-
first tree search to select specific tasks.

� Best first approach. As the name suggests, this approach produces a queue
of priority-ordered fluid tasks in every �T and a separate list of time-ordered
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hard deadline tasks. This approach is preferred for solving macro-level sensor
management tasks.

In [25], the authors describe a greedy service algorithm (GSA) that assigns ser-
vices to sensors. This algorithm assumes that services are greedy in the sense that
the highest priority service will always demand to be assigned to the ‘best’ available
sensor to perform the service. It is essentially a depth-first search of a subset of all
possible sensor assignments. The GSA approach has two significant advantages over
other algorithms for the creation of sensor task schedules. First, only those nodes for
sensors and services that can be allocated are expanded. Second, since the search is
depth first, no backtracking is ever performed; resulting in a significant reduction in
search time and memory requirements.

Rothman and Bier [199] describe two techniques. These are:

� Random allocation. Selections are made from a list randomly, assuming that
the set of tasks that the sensor manager can perform during a given cycle is
available in this list, and randomly allocated to sensors which can perform the
services. This is a very basic algorithm, easily outperformed by any other.

� Shortest job-first allocator. Allocates the jobs that will take the least amount of
time on any available sensor first. An important characteristic of this approach
is that it can be shown to provide the minimum turnaround time of any resource
algorithm.

Musick and Malhotra [167] give an in-depth comparison of two techniques:

� Random search algorithm. An undirected process that attempts to find sched-
ules using the Monte Carlo method. Generates a schedule as a list of jobs.The
strength of this approach is its simplicity. The random scheduler has no mem-
ory of previous schedules. It is very robust.

� Genetic search algorithm. Similar to the random scheduler, except that the
genetic algorithm remembers its successes and failures. While random search
is a blind search, the genetic algorithm is a heuristically guided search. This
algorithm’s strength is that it uses reliable schedules to produce better ones. It
is also robust.

In [250, 157], a dynamic sensor scheduling algorithm called the on-line, greedy,
urgency-driven, pre-emptive scheduling algorithm (OGUPSA), is introduced. This
algorithm uses three policies successively to dynamically allocate and schedule and
distribute a set of arriving tasks among a set of sensors. These three policies are:

� Most-Urgent-First to pick a task.

� Earliest-Completed-First to select a sensor, and
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� Least-Versatile-First to resolve ties among sensors, and if a tie still exists, then
a random selection is used to break it.

An important component of OGUPSA is the information contained in an applicable
sensor table that is used to assign requested tasks to specific sensors.

9.3.2 Decision-making techniques

Decision-making techniques for SMS can be divided into two subclasses, these are:

� Normative technique.

� Descriptive technique.

9.3.2.1 Normative technique

As Popoli [191] put it, a normative technique produces decisions based on some
axiomatic description of general human decision-making and specific a priori data
relevant to the decision at hand. In short, a normative approach gives answers that
a human should give in a similar situation. A major advantage of normative ap-
proaches is that they lead to systems for which performance criteria can be analyzed.
The performance of a normative system can be guaranteed with respect to a defen-
sible criteria (related to the axiomatic bases used for the decision). This technique
includes utility theoretic reasoning and evidential reasoning.

The authors in [91] consider the sensors of a multi-sensor system to be members
or agents of a team, able to offer opinions and bargain in group decision. The au-
thors presented their analysis on the coordination and control of this structure using
the theory of team decision-making. They introduced the term utility function that
combines local and global objectives by considering team member utilities and joint
team actions.

The authors in [150] adopt a normative approach which is based on axiomatic
formalization of the decision making process and present a complete and consistent
probabilistic framework which, starting from a Bayesian information update, leads
to fusion algorithms and subsequently sensor management. They propose using in-
formation as the expected utility of actions.

9.3.2.2 Descriptive technique

A descriptive technique tries to produce decisions that match what a human would
have decided based on available information. In short, a descriptive approach gives
answers a human would give in a similar situation. A major advantage of descrip-
tive approaches is that they are amenable to situations for which either objectively-
verifiable information is not available or to situations for which there is a strong
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motive to make use of information that clearly is subjective. This technique includes
fuzzy reasoning, fuzzy decision tree [191, 216] and knowledge-based approaches.

The essence of a descriptive approach is that the goal generally is to mimic
expert human behaviour for a particular problem domain. We simply hope to cap-
ture the behaviour of a human faced with the same problem. The approaches differ
primarily in their definition of how a problem should be solved rather than in the
information used to solve it.

The thrust of normative approaches is to establish a formal decision-making cri-
terion and remain faithful to it; the thrust of descriptive approaches is to provide a
system by which any human decision-making behaviour (whether or not it is for-
mally consistent) can be easily codified. Descriptive approaches can be constructed
on a weaker problem domain description than is required by a normative approach.

9.3.2.3 Hybrids of normative and descriptive techniques

As Denton et al. [67] put it, there is no single mathematical formalism that can be
effectively used to implement all of the required sensor management functions.

The authors in [25] discuss the issue that the choice of the algorithm used in
the determination of the ‘best’ sensor to perform a given service depends upon the
service in question. For example, the selection of the best sensor to perform a kine-
matics track update employs a utility theory approach in which a numerical utility for
each sensor able to perform the update is computed, and the sensor with the highest
utility is selected to perform the service. On the other hand, the selection of the best
sensor for the identification of services is performed by using a series of ‘If ... Then’
rules.

9.3.2.4 Other decision-making tools

The author in [42] discusses the use of a neural network for sensor management. The
task of the neural network is to predict the condition of the plant. This information
can then be used to estimate the sensed data tolerance ranges at each operating con-
dition for improved fault detection and isolation, hence help to improve the model
estimation of sensor values. The study has shown that a neural network is effective at
both recognizing the plant condition and in exploiting data redundancy, an intrinsic
challenge in the interdependencies of the sensed plant variables.

Hintz and McIntyre [100] present a methodology for quantifying the relative
contribution of specific sensor actions to a set of mission goals. They call the ap-
proach goal lattices, since the mission goals and the ordering relationship applied to
it can be represented as a lattice.
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9.4 Sensor Management - Controller and Cueing

As highlighted in section 2, level 1 of the sensor management process involves con-
trolling of the sensor action. Hence, conventional and advance control techniques
may play a part in sensor management’s work at this level.

However, the process of control in SMS is not trivial [148]. Depending on the
system involved, the SMS can be complicated by many factors, such as:

� Moving platforms.

� Geographical differences in sensor locations.

� Complexity in the fusion process.

� Complexity and different types of sensor systems.

The task of the controller can have many different functions or roles, such as
controlling the:

� Sensor directions/pointing to best locate/identify the moving target.

� Sensor mode and when to switch mode.

� Sensor power level.

All the control tasks have the same objective, namely to improve the fusion process,
such as in tracking and identifying the target. Figure 9.8 shows an example of a
possible SMS behaving as a controller in a closed-loop form with the sensor system
and the fusion process.

With sensor manager providing command and control to the sensors, the sensor
system will provide the fusion system with measurements, such as track data, and in
turn the data fusion algorithm will provide the sensor manager with fused data.

However, the SMS is certainly more than just a controller. As discussed in
section 2, there are different levels of processes in the SMS. One of this is the sensor
cueing process.

Here, we define sensor cueing as taking the following two forms, namely:

� sensor hand-over and

� target acquisition with another sensor aiding.

The SMS may cue a sensor to hand over its current tracking target to another
sensor due to, say,

� another higher priority target entering its trackable region, or
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� when the target is about to leave its trackable region.

The issue here is that SMS has to coordinate the handing over to ensure a smooth
transition and to reduce tracking or identification errors. On the other hand, a cued
target acquisition [30] process involves the SMS selecting which sensor to acquire
the target from and disseminating to that sensor the information required for such
acquisition. For example, the SMS may cue one of its radars to acquire range in-
formation of a target that is being maintained primarily by an EO sensor (bearing
only).

Sensors vary greatly in their ability to detect the presence of targets or the onset
of a particular target behaviour. Therefore, sensor management may improve the
response time of a sensor by a proper cueing process, hence obtaining information
from another sensor. Multiple sensors performance modelling or some expert rules
can be used for cueing to ensure no lost of target information.

In the next section, we demonstrate the SMS as a complete system based on
what we have discussed in this section.

9.5 Simulation Results

In this experiment, we considered a 20km range (probability of detection 0:90)
ground-based EO sensor with a field of view (FOV) of 15 degrees, and capable of a
panning movement of 120 degrees. The tracking process takes place over a period
of 90 seconds.

Without the SMS, a normal EO sensor tracking a target will probably move at a
fixed panning rate, following the heading of the target.

In this simulation, the target moves at a constant velocity (20m=s) within the
first 20 seconds, accelerates (5m=s2) between 21 and 50 seconds and decelerates
(�5m=s2) from 51 and 90 seconds. Mid-way through the deceleration process, the
target makes a right turn (time interval 65 to 73 seconds). An IMM filter is used in
the fusion process to track the target. The estimated target state is then sent to the
sensor management system.

9.5.1 Fuzzy controller

The fuzzy controller used in the SMS has two inputs, namely error (k) and error (k�
1), where error (k) represents the bearing error, in degrees, of the sensor boresight
to the target at the kth time step. Note that this error(k) is obtained by taking the
estimated bearing of the target minus the sensor boresight bearing.

The choice of error (k) as one of the input variables is intuitive. Nonetheless,
most similar fuzzy control systems might use the rate of change of error or � error
(k) as the second input variable, where � error(k) = error (k) - error (k � 1). The
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time change in this simulation from k to k-1 is 1 second. From the above equation, it
is clear that both pairs of error (k)/ � error(k) and error (k)/error (k�1) contain the
same amount of information and thus will provide equivalent inputs to the system.
Our choice is based on simplification reasoning.

The crisp value of error (k) and error (k � 1) are mapped into five fuzzy sets,
labelled in linguistic terms of: V L(very low), L (low), M (medium), H (high), and
V H (very high).

The meaning of each linguistic term is determined by the specific membership
functions, which are defined by triangular functions on the universe of discourse of
error (k) and error (k � 1) respectively. Figures 9.5 and 9.6 show the input universe
of discourse and the specific membership function.

The output of this fuzzy system is the panning rate (degree/sec) for the sensor,
and its universe of discourse is divided into thirteen fuzzy sets labelled in the lin-
guistic terms of: V L (very low), MVL (mid-very low), L (low), ML (mid-low),
M (medium),MH (mid-high),H (high), MVH (mid-very high), V H (very high),
MV VH (mid-very very high), V V H (very very high), MV V V H (mid-very very
very high), and V V V H (very very very high). The membership functions are also
triangular.

Figure 9.7 shows the output universe of discourse and the specific membership
functions.

The fuzzy system has a total of 25 IF-THEN rules, as summarized in table 9.1.
A sample of these rules is given below.

� IF error(k � 1) is L AND error(k) is M THEN panning rate = VH.

� IF error(k � 1) is H AND error(k) is L THEN panning rate = ML.

� IF error(k � 1) is M AND error(k) is VL THEN panning rate = MVL.

e(k � 1)ne(k) VL L M H VH
VL MVL ML MVVH MVVVH VVVH
L MVL ML VH VVH VVVH
M MVL ML VH VVH MVVH
H MVL ML MVH MVVH MVVVH

VH MVL L H VH VVH

Table 9.1: The 25 fuzzy rules

where e(k) and e(k � 1) are the error(k) and error(k � 1) respectively. We use
the centre of gravity approach for the defuzzification process.

The complete closed-loop diagram is shown in Figure 9.8. The desired goal or
the set point of the SMS is to achieve zero error.
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9.5.2 Example 1

In the first simulation, we considered one sensor. Figure 9.9 shows the target moving
profile, the sensor position and FOV. Figure 9.10 shows the results of the sensor
tracking error with respect to the target track with and without the sensor managed
by the SMS.

With a fixed panning rate of about 1 degree per second, the sensor lost track of
the target by the 11th time step and only managed to pick it up again on the 42nd,
before losing it totally after the 51st. On the other hand, with a SMS, the sensor
managed to keep track of the target throughout the first 76 time steps. Note that due
to the limited panning angles of the EO sensor, regardless of whether the SMS is in
use, the sensor will not be able to sense the target beyond the 76th time step. This
led us to the next example where 2 EO sensors are used for a better coverage.

9.5.3 Example 2

In this example, we introduce an additional EO sensor to the previous example. A
cueing process is added to the SMS on top of the fuzzy controller. The position and
coverage of the two sensors are as shown in Figure 9.11.

Theoretically the sensor management cueing modules will command the next
sensor to take over when the target is within the sensor’s FOV. The cueing process is
based on a simple rule statement, as follows:

IF
sensor 1 is within 10 degrees of its panning limits and target is within
sensor 2’s FOV,
THEN
cue sensor 2 to take over the tracking process from sensor 1.

Alternatively,

IF
another target is entering the trackable region of Sensor 1, and Sensor
1’s current target is within Sensor 2’s trackable region,
THEN
cue Sensor 2 to take over the tracking process from Sensor 1.

Figure 9.12 shows the error output of the two sensors controlled by the SMS.
The switch over occurred at the 62nd time step. Note that the errors correspond to
the target moving pattern.
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9.6 Software Agents for Decentralized Sensor Man-
agement

More recently, investigations are carried out using software agents to facilitate re-
source allocation in a decentralized environment such as decentralized sensor net-
work. The studies seek to use intelligent agents for the control of sensors in perform-
ing various tasks, such as the tracking of a moving target, improve fusion processes
through dynamic team formation and task allocation in a distributed/decentralized
environment.

Br�annstr�om [39] proposed an agent architecture, with mobile agents for a dy-
namic sensor network. Agents were divided into different types according to their
roles and they communicated and cooperated closely with each other to ensure the
proper functioning of the sensor network. In [206], an algorithm was proposed,
using the metaphor of Belief-Desire-Intention (BDI), for the allocation of tasks to
resources in a decentralized network, such that a task was assigned to a unique re-
source. Each task has an agent attempting to bidding for the resources using the BDI
metaphor. An arbitration agent or arbitrator, was used in the algorithm to determine
the agent’s intention that should be executed. In [212], the distributed task alloca-
tion algorithm using computational geometry techniques were used. Soh et al. also
provided important insights into coalition formation for a time-critical and resource-
constrained environment. It was acknowledged that in a multiagent system, where
agents have only local knowledge of the environment in which they are situated,
optimal coalition formation is difficult. Thus, in such a time-critical system involv-
ing the use of agents, it was more appropriate to trade-off sub-optimal solutions that
met minimum requirements (satisfying coalitions) than seek to form coalitions that
achieved maximum performance.

However, there are also issues in using software agents for decentralized sensor
management. For example, Howard et al. [105] raised the concern of negotiation
amongst agents in a distributed sensor network may take too long for the coalition of
sensor agents to be useful in performing tasks. Hence, it may not be suitable for time
critical systems. Investigations are currently on-going in addressing some of these
issues.

9.7 Conclusions

We have presented the various classification and roles of sensor management. The
roles of sensor management as a controller were also discussed and demonstrated in
the simulation studies.

The sensor movement with the fixed panning rate will not be able to adapt to
target changes in direction and neither could they do a proper switching between
sensors. However, the sensor controlled by a properly designed SMS, such as the
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fuzzy controller and the cue process, can adapt to a change in target movement and
detect the target.

There are, in general, more management issues for active sensors, such as the
control of the various active modes. Some examples of the active modes are burn-
through modes, very high resolution modes, search mode and track mode. For pas-
sive sensors, the management issues could be unique to each of the sensors. Ex-
ample: sensor management could act as a feedback controller to control the passive
sensor direction (e.g. adaptive scan rate), control the detection threshold or the time
integration of the sensor’s data processing.

Lastly we discussed the use of software agents for decentralized sensor manage-
ment.
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Figure 9.5: Partition of the input universe of discourse for error (k).
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Appendix A

A.1 Filter Models

A.1.1 Stationary model

� 1-D stationary model. For estimating the bearing of a target hovering or mov-
ing at a constant bearing towards a sensor with zero mean random bearing
velocity. The following can be applied.

Xk+1 = Xk + Twk (A.1)

where: Xk = [xk], wk = [ _xk], and T is the sampling interval.

� 2-D stationary model. For estimating the position of a target at a stationary po-
sition with zero mean random velocity. The model equation can be described
as:

Xk+1 = Xk + Twk (A.2)

where: Xk =

�
xk
yk

�
, wk =

�
_xk
_yk

�
, and T is the sampling interval.

A.1.2 Constant velocity model

� 1-D constant velocity model. For estimating the position of a target moving at
constant velocity with zero mean process noise.

Xk+1 =

�
1 T
0 1

�
Xk +

�
T 2

2
T

�
wk (A.3)

where: Xk =

�
xk
_xk

�
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� 2-D constant velocity model. For estimating the position of a target moving
at constant velocity motion with zero mean random acceleration. The model
equation can be described as:

Xk+1 =

2
64
1 0 T 0
0 1 0 T
0 0 1 0
0 0 0 1

3
75Xk +

2
664

T 2

2 0

0 T 2

2
T 0
0 T

3
775wk (A.4)

where: Xk =

2
64
xk
yk
_xk
_yk

3
75.

A.1.3 Acceleration models

� 1-D acceleration model (Ramachandra’s model I). For estimating the position
of a vehicle moving at constant acceleration to a sensor with zero mean process
noise. The model equation is described as:

Xk+1 =

2
4 1 T T 2

2
0 1 T
0 0 1

3
5Xk +

2
4 0

0
ak

3
5 (A.5)

where: Xk =

2
4xk_xk

�xk

3
5.

And T is the sampling interval and ak is the process noise that disturbs the
acceleration of the vehicle. It accounts for both maneuvering and other mod-
eling errors, and is assumed to have zero mean and constant variance � 2

a:

The covariance matrix Q for the process noise is thus given by:

Q =

2
4 0 0 0
0 0 0
0 0 �2a

3
5 (A.6)

� 1-D acceleration model (Ramanchandra’s model II). The model can be defined
by:
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Xk+1 =

2
4 1 T T 2

2
0 1 T
0 0 1

3
5Xk +

2
4 T 3

6
T 2

2
T

3
5wk (A.7)

where: Xk =

2
4xk_xk

�xk

3
5

� 2-D acceleration model (extension of Ramachandra’s model I).

Xk+1 =

2
6666664

1 0 T 0 T 2

2 0

0 1 0 T 0 T 2

2
0 0 1 0 T 0
0 0 0 1 0 T
0 0 0 0 1 0
0 0 0 0 0 1

3
7777775
Xk +

2
666664

0 0
0 0
0 0
0 0
1 0
0 1

3
777775wk (A.8)

where: Xk =

2
666664

xk
yk
_xk
_yk
�xk
�yk

3
777775

A.1.4 Exponentially correlated velocity (ECV) model

In this model, it was assumed that the target velocity decays exponentially between
measurements with no continuous process noise and undergoes an instantaneous
change at each sampling time.

Xk+1 =

�
1 �(1� e��)
0 e��

�
Xk + Uk (A.9)

where: Xk =

�
xk
_xk

�
.

Covariance of Uk is:

Q =

�
�2�2v [4e� 3� e�2� + 2�] ��2v [1� e��]2

��2v [1� e��]2 �2v [1� e�2�]

�
(A.10)

where: � = T
� , T is the sampling time and �2v is variance of the target velocity,

� is the target time.
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The measurement model is:

Zk+1 = [ 1 0 ]Xk+1 + vk+1 (A.11)

where variance of vk is R = �2v .

A.1.5 Exponentially correlated acceleration (ECA) model

This model is applied to a vehicle moving with a random exponentially correlated
acceleration with a white noise process.

The model equation is:

Xk+1 =

2
4 1 T �2(� + e�� � 1)
0 1 �(1� e��)
0 0 e��

3
5Xk + Uk (A.12)

where: Xk =

2
4xk_xk

�xk

3
5 and

T is the sampling time, � is the correlation time of the vehicle acceleration and
� = T

� . The process noise covarianceQ is expressed as:

Q =

2
4 q11 q12 q13
q12 q22 q23
q13 q23 q33

3
5 (A.13)

where:
q11 = �4�2a[1� e�2� + 2�(1� 2e�� � � + �2

3 )]
q12 = �3�2a(1� e�� � �)2

q13 = �2�2a(1� e�2� � 2�e��)
q22 = �2�2a[(1 + 2�)� (2� e��)2]
q23 = ��2a(1� e��)2

q33 = �2a(1� e�2�)

and �2a is the variance of the target’s acceleration.
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A.1.6 The coordinated turning model

Applicable to vehicle motion with a constant turn rate and constant speed.

Xk+1 =

2
66664
1 sin!(k)T

!(k) 0 � 1�cos!(k)T
!(k) 0

0 cos!(k)T 0 �sin!(k)T 0

0 1�cos!(k)T
!(k) 1 sin!(k)T

!(k) 0

0 sin!(k)T 0 cos!(k)T 0
0 0 0 0 1

3
77775Xk +

2
66664

T 2

2 0 0
T 0 0
0 T 2

2 0
0 T 0
0 0 T

3
77775 vk
(A.14)

The measurement equation is thus:

Zk+1 =

�
1 0 0 0 0
0 0 1 0 0

�
Xk+1 +

�
vx(k + 1)
vy(k + 1)

�
(A.15)

where: Xk =

2
6664
x
_x
y
_y
!

3
7775

A.1.7 The measurement equation

The measurement equation converts state vector X to the measurement vector Z.
For example, in 2-D constant velocity model, the measurement equation is:

Zk+1 =

�
1 0 0 0
0 1 0 0

�
Xk+1 +

�
vx(k + 1)
vy(k + 1)

�
(A.16)

where:Zk+1 =

�
xm(k + 1)
ym(k + 1)

�
.

And:
xm(k + 1) = measured x coordinate at scan k + 1.
ym(k + 1) = measured y coordinate at scan k + 1.
vx(k + 1) = random noise on x measurement at scan k + 1.
vy(k + 1) = random noise on y measurement at scan k + 1.

A.2 Generic Particle Filter

The dynamics system model of a manoeuvring target in a tracking system is given
by

_x = f(x; u; w) (A.17)
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z(k) = h(x(k); v(k)) (A.18)

where x is the state vector, u is the control vector, w is the process noise vector rep-
resenting possible deviations in f(:). z(k) is the discrete-time measurement vector
at time k, and v(k) is the measurement noise vector.

The dynamics of the target is a continuous-time process, as indicated by equation
A.17. f(:) defines the motion for the target in a form of a differential equation. The
measurement process is in discrete time because most sensors used for target tracking
record the position and velocity at a given instance of time. Hence, the measurement
equation A.18 in discrete form is

z(k) = H(k)x(k) + v(k) (A.19)

The function f(:) is usually unknown to the tracking system. Hence, the tar-
get dynamics are commonly modelled by a deterministic linear dynamic system in
discrete time as follows:

x(k + 1) = F (k)x(k) +G(k)u(k) + w(k): (A.20)

At time k, x(k) (assumed to be a vector of dimension nx) is the state of the system
normally containing the position and velocity of the target. F (k) is the transition
matrix of dimensions (nx � nx) and it defines a linear constraint on the target dy-
namics, u(k) is the unknown input control, a vector of dimension n u, G(k) is the
input gain (or noise matrix) (nx�nu matrix) and w(k) � N(0; Q(k)) is the process
noise which is usually assumed to be white Gaussian noise with variance Q.

In tracking manoeuvring targets, the control vector is not directly observable by
the tracking system. Since the input control is unknown, the dynamics model that is
assumed for a target in a tracking system is further simplified as follows:

x(k + 1) = F (k)x(k) + w(k) (A.21)

The process noise w(k) can be used to model the unknown target acceleration.
The unknown acceleration term can also be included in x to form a third-order model.
However, the acceleration most often varies with time in such a manner that a model
cannot be clearly identified during tracking.

A.2.1 Generic particle filter algorithm

The following steps show the algorithm of the generic particle filter:

1. Initialization

� N = Number of particles.

� X(i)(1) = [x(1); y(1); 0; 0]
T for i = 1; : : : ; N:
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2. Prediction step

� For each particle i = 1; : : : ; N , evaluate the (k+1jk) state of the process
system using the state at time k with the process noise at time k.

X̂(i)(k + 1jk) = F (k)X̂(i)(k) +

�
Cauchy Distributed
Process Noise

�
(k)

3. Evaluate importance weights

For each particle i = 1; : : : ; N ,

� Find the predicted observation state of the measurement system using the
predicted current state of the system and the measurement noise at time
k.

ẑ(i)(k + 1jk)=H(k + 1)X̂(i)(k + 1jk) +
�
Gaussian Distributed
Measurement Noise

�
(k+1)

� Calculate the likelihood (importance weights) according to the distribu-
tion given.

likelihood(i) = N (ẑ(i)(k + 1jk); z(i)(k + 1); var) (A.22)

� Normalize the importance weights.

~w(i) =
likelihood(i)PN
j=1 likelihood

(j)
(A.23)

4. Resampling/Selection

Resample using multinomial sampling techniques by multiplying the particles
with higher importance weights and suppressing the particles with lower im-
portance weights. Modify the current state using the new indexed weights
calculated.

� Compute cumulative weights,

CumWt(i) =

iX
j=1

~w(j) (A.24)

� Generate random variables uniformly distributed in U (i) � U(0; 1) with
the number of steps according to the number of particles.
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� Determine which particle to multiply and which to suppress (see Figure
A.1):
For every particle inIndex i, where i = 1; : : : ; N

Case(1) : If 0 < U (i) < CumWt(1)

or

Case(2) : If CumWt(j) < U (i) < CumWt(j+1)

for j = 1; : : : ; N � 1. Replace the old inIndex of that particular particle
i with the new outIndex of the CumWt, i.e. 1 for Case(1) or j + 1 for
Case(2) and repeat for the next inIndex i = i+ 1.

resampled index

CumWt(i)

U(i)

(j)
w(t)

j

i

N
-1

Figure A.1: Resampling process.

5. Propagation step

� Incorporate the new state values after resampling of time step k for the
calculation of time step k + 1.

x̂(1:N)(k + 1jk + 1) = x̂(outIndex)(k + 1jk) (A.25)

� Compute posterior mean

x̂(k + 1) = mean[xi(k + 1jk + 1)]; for i = 1; : : : ; N (A.26)

� Repeat Step 2 to Step 5 for each time step.
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A.3 Bayesian Classifier

The Bayesian classifier uses a probabilistic approach of updating the likelihood of a
hypothesis given a previous likelihood estimate and new observation of the target of
interest. An example of a classification hypothesis is ‘The target is of Type X’. The
whole updating process is summarized by the following equation:

P (HijE) = P (EjHi)P (Hi)Pn
j=1 P (EjHj)P (Hj)

for i = 1 : n (A.27)

where
P (HijE) : posterior probability of hypothesis H i being true, given the new

observationE, also known as the a posteriori probability.
P (EjHi) : conditional probability of making observation E given that the

Hi is true, and it is also called the transitional probability; and
P (Hi) : a priori probability of hypothesisHi being true.

Note that the n hypotheses H1; H2; : : : ; Hn must be mutually exclusive and
exhaustive and

Pn
j=1 P (Hj) = 1:

By the end of the updating process given an observation E, we obtain a set of
posterior probabilities of all the hypotheses. Commonly used decision logic will be
to select the hypothesis with the largest posterior probability as the true hypothesis
- this approach is known as the MAP (Maximum A Posteriori) method. In addition,
most decision logic also requires this maximum posterior probability to exceed a
predefined threshold before a declaration on the target’s classification is done.

However, in practical applications, a single observation usually will not lead to
the maximum posterior probability to exceed the given threshold, and usually several
observational updates are needed to confirm the target classification.

The following equation is used instead of equation (A.27) given a sequential up-
date of observations fE1; E2; : : : ; Ek�1; Ek; : : :g to update the posterior probability
of each hypothesis at time step k:

P (HijEk) = P (Ek jHi)P (HijEk�1)Pn
j=1 P (EkjHj)P (Hj jEk�1) for i = 1 : n: (A.28)

An important assumption here is that the observations are independent condi-
tioned upon the same hypothesis. That is,

P (Ek; Ek�1jHi) = P (EkjHi)P (Ek�1jHi) 8k; i = 1 : n; (A.29)

although the observations are in general not independent, that is,

P (Ek; Ek�1) 6= P (Ek)P (Ek�1): (A.30)
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{E1, E2, ... , Ek−1, Ek ...}
Obervation Data

P(E k | Hi)

Transitional
Probabilities

P(H i)

Prior
Probabilities

Bayesian
Update

P(H i) = P(H i | Ek)
Update Prior Probabilites:

Decision Logic
(MAP) + Threshold

Target Classification

Figure A.2: Sequential updating process of Bayesian classifier.

Figure A.2 depicts the sequential updating process of the Bayesian classifier.

Next, we consider the case of two sensors making a sequences of observa-
tions fX1; X2; : : : ; Xk; : : :g and fY1; Y2; : : : ; Yk; : : :g, respectively. In this case,
the Bayesian equation for the posterior probabilities updating becomes:

P (HijXk; Yk) =
P (XkjHi)P (YkjHi)P (HijXk�1; Yk�1)Pn
j=1 P (XkjHj)P (Yk jHj)P (Hj jXk�1; Yk�1)

for i = 1 : n:

(A.31)

As in equation (A.28), the assumption of independent observations being made
by Sensor 1 and Sensor 2 is in place. That is,

P (Xk; YkjHi) = P (XkjHi)P (Yk jHi) 8k; i = 1 : n: (A.32)

By applying equation (A.29), the classifier is effectively a joint classifier/fuser
of two individual local classification processes, as depicted in Figure A.3.

Equation (A.29) can be easily generalized to handle cases of more than two
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function

Sensor 2

m2 mass

Local
Classifier:

Sensor 1

m1 mass
function

Local
Classifier:

DS Joint
Classification
Process:

Dempster Rule
of Combination

Combined
Declaration
of Target’s
Classification

1 2 k ...}{Y , Y , ..., Y
Observations
Sensor 2

{X1, X2, ..., Xk ...}

Sensor 1
Observations

Figure A.3: Joint classification.

sensors.

A.4 Dempster-Shafer Classifier

The Dempster-Shafer classifier carries out evidential reasoning process using the
Dempster-Shafer theory developed by Shafer [207] and originally initiated by Demp-
ster [207]. The Dempster-Shafer (DS) theory starts with a universal set:

� = fH1; H2; : : : ; Hng (A.33)

whose elements Hi are mutually exclusive and exhaustive. The set � is called the
Frame of Discernment. In the case of classification application, the H i defined here
could be identical to those defined in the above Bayesian Classifier. However, the
difference here is that the attention is drawn onto the power set (the set of all subsets)
of �, denoted by 2�, instead of the individualHi.

Ignorance

p(A) Pl(A)Bel(A)

Figure A.4: Belief and plausibility functions.

Let A be an element of 2�. We call A a proposition, where it is possibly a union
of some of the hypothesesHi.
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Examples of A 2 2�:

A = fH2; H5g;
A = fH3g;
A = fH2; H3; H4; H6g;
A = fH4; H5; H6g:

The DS reasoning consists of a basic probability mass assignment, which is a
function acting on the elements of the power set of �, m : 2� ! [0; 1], such that

m(�) = 0;X
A��

m(A) = 1: (A.34)

A ‘belief function’ and a ‘plausibility function’ are associated with m, are de-
fined as

Bel(A) =
X
B�A

m(b)

P l(A) =
X

A\B 6=�

m(B) = a�Bel(A) (A.35)

respectively, for all A � � (Figure A.4).

The belief function provides a global measure of the belief that a proposition A
is true. On the other hand, the plausibility measure of proposition A is the amount
of belief that could possibly be put on A if further evidence that support A arrives.
Note thatBel(A) � P l(A), and the true probability ofA lies between them. The gap
betweenBel(A) and P l(A) denotes the classifier’s ignorance aboutA. In summary,
the DS method distributes the total mass of uncertainty over all the subsets of �
instead of over the individualHi.

The DS theory provides a rule called the Dempster’s Rule of Combination (also
called the orthogonal sum) to combine two mass functionsm1 andm2 and is defined
as:

m1�m2(A) =

P
B\C=Am1(B)m2(C)

1�K

K =
X

B\C=�

m1(B)m2(C): (A.36)

The term K indicates the amount of conflicts between the two mass functions,
and 1 � K is the re-normalizing term to ensure that the combined mass function
satisfies condition (A.34). The orthogonal sum is associative and commutative.
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{E1, E2, ... , Ek−1, Ek ...}
Obervation Data
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Masses
m(A)
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(MAP) + Threshold

Mass
functions
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Update

Figure A.5: DS classification process. Note that the update equation is given
by m(A) = (m(A)jEk)� (m(A)jEk�1)

The classification process of the individual sensor DS classifier is shown in Fig-
ure A.5.

For a DS classifier, the choice of the decision logic is not as straight forward
as in the case of the Bayesian classifier. But the concept is still similar, as in it
we wish to select a proposition with the highest probability and check it against the
classification declaration threshold. What is tricky in this case is that:

� Firstly, we may want to decide on a single hypothesis and the set of proposi-
tions consists of not only the singletons of the individual hypothesis, which is
of the classifier’s main interest, but also all possible unions of them.

� Secondly, should the belief measure or the plausibility measure be used in
the judgement? In the literature, most researchers use the belief measure for
making decisions since it directly represents the amount of support given by
all evidences available.
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Smets [210] proposed an alternative approach as he introduced the Pignistic
(from Latin pignus, meaning a bet) probability that transformed the belief function
into a probability function for decision-making, and is defined as

BetP (Hi) =
X
Hi2A

m(A)

jAj 8Hi 2 �: (A.37)

The idea is to distribute the ambiguous mass of a proposition equally over its
elements.

The existence of the Dempster’s rule of combination also readily puts the DS
classifier as a suitable candidate to take on the role of the Joint Classifier, especially
when local classifiers output soft decisions that contain probabilistic measures of the
confidences of the hypotheses or propositions in question.

A.5 Artificial Immunology System

Biologists had studied the immune system, particularly the human immune system,
for century. Recently, engineering researchers have been looking at the amazing
and complex immunological defense mechanisms that make up the immune system.
They are aiming at modeling or mimicking these mechanisms for practical appli-
cations, such as: intelligent computer and network security systems, smart defense
systems, identification and pattern recognition systems, and general optimization
problems.

Without the immune system the body would not be able to defend itself against
disease and illness. The immune system consists of monocytes, which act as sen-
tinels; helper and suppressor T-cells which sound the alarm; antibodies, killer cells
and cytotoxic T-cells which acts like an artillery; and macrophages which clean up
the battlefield [51]. The body is like a large battlefield where the immune system has
to ensure that it wins the battle 100% when invaded. When the immune system is
functioning properly, we hardly notice the constant battles that rage within us.

The components of the human immune system are many and varied. The major
constituents include the bone marrow, thymus, lymph nodes, spleen, tonsils, ap-
pendix, Peyer’s patches and lymphatic vessels. These all protect the body against
dangerous toxins and invading microorganisms. Readers who are interested to know
more about the artificial immune systems may refer to the book by Leandro N. de
Castro and Jonathan Timmis [66].

A.5.1 B-cells or B- lymphocytes

B-cells or B-lymphocytes provide the antibodies or immunoglobulins to the body.
They are precursors to the powerful plasma cells, which provide the body with valu-
able antibodies or immunoglobulins. Antibodies constitute the immune system’s
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single most powerful weapons. B-cells use antibodies as ammunition. For example,
when a virus appears that is too strong for even the mighty macrophages, plasma
cells launch antibodies, which, with the help of other immune cells, break the enemy
to pieces.

Specialized training ensures that the B-cells have specific immunity to antigens.
Antigens are foreign makers. It helps all immune cells differentiate invaders from
body cells. Approximately one billion B-cells in the body are sent for ‘training’ and
divided into groups. Depending on the group a B-cell is placed in, it will learn how
to identify and kill one of a million different kinds of antigens that it may come into
contact with. This is the cell’s specific purpose, or its specificity. The B-cell will only
be able to identify and confront that one specific antigen it specialized in. A healthy
body produces enough B-cells to make the entire trained force a very effective army
against invaders that enter the body.

A.5.2 T-cell or T-lymphocytes

About 75% of the lymphocytes are trained in the thymus gland and are called T-cells
or T-lymphocytes. The T-cells do not use antibodies. Mature activated T-cells will
evolve into one of the following kinds of cells: helper cells, suppressor cells, killer
cells, cytotoxic cells or memory cells.

Helper cells are responsible for prompting many of the immune system cells
into action. It identifies an invader and rush to the spleen and lymph nodes where it
sends chemical signals that stimulate other cells. By way of chemical signals called
lymphokines, the helper cells transmit messages that rally B-cells and macrophages
into battle.

Suppressor cells suppress the activator messages sent out by the helper cells.
This keeps the immune system from working too hard and killing many of its own
members.

Killer cells destroy cells which have penetrated the system and have been taken
over by antigens. For example, when cancer takes over cells, the killer cell’s re-
sponsibility is to destroy the occupied cell. Normally killer cells reside in the lymph
nodes, but when antigens are present the killer cells swarm out to find the antigen of
their specificity.

Cytotoxic cells also use poisons to kill the enemy. When cytotoxic cells come
in contact with their target antigen, the cytotoxic cells release a cytotoxic substance
that either kills or renders the invader helpless.

Memory cells. Each time a B- or T-cell meets an invader, it memorizes its spe-
cific qualities or makeup. This information is stored in the immune system, and
new lymphocytes recruits are trained to recognize this agent as an enemy. The next
time the invader appears in the body, these memory cells identify it and begin the
immediate production of antibodies against it.



212

Lymph organs, such as lymph vessels and lymph nodes, aid the immune function
by cleansing the blood and organisms that are floating in the bloodstream.

A.5.3 What can we learn from the immune system?

Listed below are some possible areas where we can learn and attempt to engineer
possible algorithms for intelligent systems:

� Multi-layer defense mechanism. The complete immune system is a multi-
layer defense mechanism. The first layer of defense in an immune system is
the physical barrier, namely the skin, nasal hairs and mucous tissues. Itching
effects that cause coughing and sneezing help to expel the invader. The sec-
ond layer of defense is the biochemical barrier, such as fluids (saliva, sweat
and tears), that contain destructive enzymes. Stomach acids will kill most
microorganisms ingested in food and drinks. The third layer of defense are
organs such as the lymph node and spleen (also see the adaptive immune sys-
tem). These contain a system of passages through which lymph and blood
circulate constantly. In this way harmful elements can be removed from the
blood and lymphs before they have the opportunity to multiply. The complete
immune systems are on constant ‘seek and destroy’ mission.

� Attack mechanism. The immune system’s strategic attack may be divided into
three phases. These are: recognition of the antigen, activation of lymphocytes
and effector phase.

� Pattern recognition mechanism. By direct matching of pattern. New pattern
will be learnt and adaptively modeled for future matching.

� Specialized function. The B-cell and the several groups of T-cells have spe-
cialized functions. Each plays a role in destroying a particular invader.

� Working cooperatively. The complete immune system works together to battle
against a multitude of pathogens. For example, one can see helper cells as
the ‘bugler’ giving call to arm for battle. Protein emissions from helper cells
actually tell B-cells to begin transformation into plasma cells. The plasma
cells, together with other immune cells, break the pathogen. This complex
collaboration process continues until all the foreign invaders are destroyed.

� Decentralized control. The components of the immune system are decentral-
ized and spread across the entire body. It is not controlled by a central organ.
Each component of the immune system act autonomously in identifying and
eliminating the pathogens. The lymphoid organs are distributed throughout
the body. These are subjected to decentralized ‘training’ in the ‘instruction
center’, such as the thymus gland and lymphoid tissues.
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� Adaptation mechanism. The immune system can adapt itself structurally and
in numbers to the invaders’ challenges. It has the capabilities to learn and
remember the identification of the invaders, and to clone itself in large numbers
when challenged.

A.6 Introduction To Ontology

Lately, there has been a lot of interest in ontologies, partly due to the interest in
the semantic web and partly because ontologies promise to be a means of achieving
semantic interoperability between different systems. In this section, we examine the
background and the components of an ontology and also highlight aspects of their
development and reasoning processes.

A.6.1 Introduction

In May 2001, Tim Berners-Lee (the founder of the Web) shared his vision of the
future in a Scientific American article entitled ‘The Semantic Web’ [24]. His vi-
sion was ‘an extension of the current web in which information is given well-defined
meaning’ that computers or software agents can understand and utilize in performing
complex tasks. For instance, an agent can arrange on behalf of its user an appoint-
ment with a specialist by understanding the meaning of the various information it
is presented with; like medical condition, doctor’s schedule and location of clinics.
The well-defined meaning or semantic is provided by ontologies, leading some re-
searchers to conclude ‘ontologies are the basic infrastructure for the Semantic Web’
[151].

An ontology is an artifact built using formal languages that allows the inten-
sion of the words used by a community, when they communicate, to be defined as
precisely as possible. When the community speaks of a certain object or a certain
thought, they hold in their mind certain concepts that are not expressed in the utter-
ances they make. For instance the concept of ‘ABOVE’ encompasses many different
configuration of objects, all of which is understood to exhibit the ‘ABOVE’ relation-
ship as shown in Figure A.6. For an ‘ABOVE’ relation, definitions can include the
notion of contact or lack of contact as well as the extent of area being encompassed.
An ontology seeks to make these hidden concepts explicit, necessitating its users and
builders to provide definitions that are unambiguous and as close to the intension of
the concepts as possibly allowed by the limitations of the formal language.

A.6.2 Components of ontologies

An ontology has four elements: concept, instance, relation and axiom. Each ontol-
ogy talks about concepts and their instantiations. Concepts can be seen as a cate-
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(a) (b) (c)

Object

Table

Figure A.6: Different interpretations of the ‘ABOVE’ relation.

gorization of the domain into different categories that may or may not overlap. An
individual or instance is said to belong to a concept if it embodies the characteristics
of the concept. In our simple ontology (see Figure A.7), we have four concepts:
human beings, male human beings, female human beings and apples. We also have
two individuals, John who is a male human being and Mary who is a female human
being.

AppleHuman

Female_HumanMale_Human

John Mary

Axiom − Male_Human
disjoint_with Female_Human

Instance_of

Is_A Is_A

Instance_of

Eats

Sells

Figure A.7: Simple Ontology.

Relations and axioms differentiate an ontology from a simple lexicon. A rela-
tion describes how concepts and instances are associated. In our simple ontology,
human beings is related to male human beings and female human beings by the Is A
or subsumption relation. This means that instances of male human beings share all
the characteristics on human beings and, similarly, instances of female human beings
share all the characteristics of the parent concept. Human beings are related to apples
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via the EAT relationship denoting the idea that apples function as food for human be-
ings as well as via the SELLS relationship. There can be any number of relationships
defined between any pair of concepts. An axiom is also included in this ontology.
The concept of male human beings is disjoint from the concept of female human be-
ings showing that these two concepts do not share common instances. Every axiom
shapes an ontology closer to the intended expression of the conceptualisation. In this
particular example, we are excluding from consideration androgynous human beings
(i.e. human beings born with either both male and female sex organs).

A.6.3 Classification of ontologies

An ontology can be classified into one of three roles: top-level, domain and applica-
tion. These is not static classification, as a top-level ontology for a group of systems
may be an application ontology of a different group of systems. In general, a top-
level ontology provides broad definitions that can be used across several domains.
An application ontology is a specific ontology that may be irrelevant to another ap-
plication as it describes constraints that applies to the application.

The choice of the language used to encode the ontology, as well as the target
level of the ontology, determines its expressiveness. In general, the more expressive
is an ontology, the harder and longer it is to reason with the ontology. Borgida and
Patel-Schneider illustrated the difficulty with an example [38]. In the application,
ontologies are used as terminological services, allowing constraints between terms to
be checked during its execution. These ontologies would have limited expressiveness
so as to reduce the computational requirements for the reasoning task. Ontologies
used as references for a discourse are much more expressive since the requirements
for reasoning tasks are fewer, i.e. the ontologies are used to establish consensus
about the semantics of the terms used and not to infer new knowledge.

A.6.4 Principles of ontology design

Gruber articulated five design principles for good ontology design [90] that we can
distill into two: clarity and modularity. A good ontology would be clear to its de-
signers, users and also to the machines. The purpose of the ontology would be
documented and the ontological entities described in a clear way that it is obvi-
ous, i.e. what and how each term is used. Each term is defined concisely and
comprehensively. Any ambiguous term should be renamed so that the ambiguity
can be resolved. For instance, BANK can be interpreted as a financial institution
or as a geographic feature. In this case, we should name the term so that these
characteristics are clear in the names (e.g. BANK-FINANCIAL-INSTITUTION,
BANK-GEOGRAPHIC-FEATURE). Relationships and formal semantic should also
be stated, if possible, in order to provide further clarity to the terms.

Like good software engineering practice, an ontology should also be developed
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as smaller, internally coherent components (or modules). A smaller ontology tends
to be self-contained and easier to reuse than a larger, more monolithic ontology since
it has less ontological commitments. The complexity of building an ontology is also
managed by focusing on the development of smaller modules and the integration of
the modules into the desired ontology.

A closely-related concept to modularity is extensibility. While developing the
ontology, we should bear in mind its future extensions. An ontology should not be
too generic nor should it be overly specific. In other words, it should be well tailored
to its purpose and domain.

An ontology can be represented in different languages (e.g. frame, first-order
logic, etc.) The chosen ontology representation language should be flexible enough
that the ontology can be readily translated to a different application implementation
language (e.g. C++/Java classes, production rules). This would allow the designed
ontology to have minimal encoding bias. The DARPA Agent Markup Language
with the Ontology Inference Layer (DAML+OIL) is based on a family of restricted
first-order logics known as Description Logics that provides the formal foundation.
We are able to perform reasoning through a variety of tools like the Java Theorem
Prover (JTP) [83], Jena API [154] and Z/Eves with DAML+OIL semantic library
[70]. Using this language also has an advantage - as a migration path from the
University of Maryland (http://www.mindswap.org) exists to transform ontologies
written in DAML+OIL to the upcoming standard W3C Web Ontology Language.

A.6.5 Conclusion

In summary, an ontology encodes knowledge in a formal language that can be used
to establish consensus among a community of users, as well as to be processed by a
computer or software agent in its reasoning task. An ontology consists of concepts,
instances, relations and axioms, whose development are guided by two principles:
clarity and modularity.
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